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Fig. 1. We develop a general neural architecture for learning on surfaces that uses a local-global construction, resulting in a framework that is highly accurate

for processing detailed meshes while being more e�icient than comparable methods. Le�: We train PoissonNet on source-to-target shape deformation for

humanoid characters. Our model is able to generalize to in-the-wild geometries while preserving fine details and obeying the provided pose parameters (see

reference target pose exemplars). Bo�om right: Our method is general and can be applied broadly to learning tasks on surfaces—e.g. for finely segmenting

human bodies. Top right: PoissonNet is able to represent extremely high-frequency geometry, such as a crumpling paper ball with 300k faces.

Many network architectures exist for learning on meshes, yet their construc-
tions entail delicate trade-o�s between di�culty learning high-frequency
features, insu�cient receptive �eld, sensitivity to discretization, and ine�-
cient computational overhead. Drawing from classic local-global approaches
in mesh processing, we introduce PoissonNet, a novel neural architecture
that overcomes all of these de�ciencies by formulating a local-global learn-
ing scheme, which uses Poisson’s equation as the primary mechanism for
feature propagation. Our core network block is simple; we apply learned
local feature transformations in the gradient domain of the mesh, then solve
a Poisson system to propagate scalar feature updates across the surface
globally. Our local-global learning framework preserves the features’s full
frequency spectrum and provides a truly global receptive �eld, while remain-
ing agnostic to mesh triangulation. Our construction is e�cient, requiring far
less compute overhead than comparable methods, which enables scalability—
both in the size of our datasets, and the size of individual training samples.
These qualities are validated on various experiments where, compared to
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previous intrinsic architectures, we attain state-of-the-art performance on se-
mantic segmentation and parameterizing highly-detailed animated surfaces.
Finally, as a central application of PoissonNet, we show its ability to learn
deformations, signi�cantly outperforming state-of-the-art architectures that
learn on surfaces. https://github.com/ArmanMaesumi/poissonnet
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1 Introduction

Recent years have seen an explosion in techniques for deep learning
on surfaces represented as triangle meshes. As opposed to point
clouds and voxel grids, meshes are a representation that can easily
encode highly-detailed geometry, provide an appropriate discretiza-
tion of a Riemannian manifold, encode explicit topological infor-
mation, and enable computations on the underlying surface (e.g.
via �nite elements). For these reasons, meshes remain the primary
choice of representation for a wide array of applications in graphics.
Current state-of-the-art learning methods for meshes follow an

intrinsic approach by employing the surface’s di�erential operators
(e.g., the Laplacian, gradient, curl, divergence). At each block of the
neural network, the di�erential operators are used to transform
intermediate feature �elds (e.g. by taking the divergence of a vector
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Method
Full

Spectrum

Spatial

Support‡
Triangulation

Agnostic
Precompute Inference Scalable

PoissonNet (ours) Yes Global (inhom.) Yes Single factorization Fast Yes
Di�usionNet (direct) [2022] Yes Learned (hom.) Yes Many factorizations Slow Mesh-bound
Di�usionNet (spectral) [2022] Truncated Learned (hom.) Yes Eigenbases Fast Dataset-bound
DeltaConv† [2022] Yes Local + pooling No K-NN Fast Yes
HodgeNet [2021] Truncated Local Yes Eigenbases Slow Dataset-bound
Harmonic Surface Net [2020] Yes Local No Parallel transport Slow Mesh-bound
MeshCNN [2019] Yes Local + pooling No N/A Slow Mesh-bound

Table 1. A bird’s-eye view of trade-o�s associated with various methods for learning on surfaces. Columns correspond to: Full Spectrum: whether features

are propagated in their full frequency spectrum, or spectrally truncated; Spatial Support: the e�ective receptive field of each atomic block in the network;

Triangulation Agnostic: changes in triangulation produce near-identical outputs; Precompute: amount and type of required per-mesh precomputation;

Inference: per-sample inference latency (ignoring precompute); and Scalable: ability to scale up training or model size – a�ected by amount of precompute

(dataset-bound) and inference e�iciency (mesh-bound). Green entries indicate desirable extremes, red entries indicate undesirable extremes (spectral truncation,

expensive per-mesh precomputation, slow runtime), with intermediate hues reflecting partial trade-o�s. PoissonNet is the first method to simultaneously

encompass: feature propagation in the full eigenspectrum, global spatial support (via a sparse Poisson system that is e�iciently solvable across our network),

agnosticism to mesh discretization, and ability to scale in the number of data samples and mesh size, thereby addressing the fundamental limitations of prior

intrinsic architectures. †DeltaConv is a point-based method, though it operates using similar constructs as the other methods in this table. Its entry “No”

under Triangulation Agnostic reflects lack of discretization invariance: local K-NN neighborhoods (and thus the layer’s behavior) change with sampling density.
‡ hom. and inhom. indicate that Di�usionNet’s heat equation is homogeneous, whereas Poisson’s equation is inhomogeneous (see Section 2 for discussion).

�eld of features [Wiersma et al. 2022]); alternatively, the di�erential
operators may de�ne a partial di�erential equation (PDE) whose
solution serves as the transformed signal [Gao et al. 2024; Sharp et al.
2022]. This approach provides the means to treat the surface with
proper tools from di�erential geometry, and endows these methods
with crucial properties, such as triangulation agnosticism (di�erent
discretizations of the same shape lead to similar outputs).
There are many ways to incorporate di�erential operators in

a learning framework, often resulting in intricate constructions,
which in turn exhibit particular de�ciencies that reoccur across all
existing methods, e.g., a limited receptive �eld due to locality of
the chosen operators; inability to represent features in their full
frequency spectrum; sensitivity to surface discretization; and, ex-
pensive computation and memory footprints.
In this paper, we devise a simple and straightforward intrinsic

learning approach that overcomes the above issues. We achieve this
by formulating our network through Poisson’s equation — a particu-
lar PDE, which we argue is a natural choice for this task. Poisson’s
equation is one of the most ubiquitous PDEs in graphics, appearing
in cornerstone algorithms such as As-Rigid-As-Possible [Sorkine and
Alexa 2007], Poisson Surface Reconstruction [Kazhdan et al. 2006],
in image editing [Fattal et al. 2002; Pérez et al. 2023], and recently as
a proxy to learning deformations’ gradients [Aigerman et al. 2022].
Surprisingly, no work has leveraged Poisson’s equation for feature
learning on meshes; rather, its use has been limited to end-stage
“integration” steps common in aforementioned algorithms.

Intuitively, Poisson’s equation acts as a bridge between the gradi-
ents of signals, and the signals themselves: if the gradient operator
transforms signals into their spatial gradients, then Poisson’s equa-
tion can be seen as its inverse—conceptually akin to an integration
operator (see Section 3 for further discussion).

Using this fact, we design a network architecture that alternates
between the gradient domain and the functional domain, similar to

classic local-global algorithms in graphics. Concretely, each block
of our network takes the gradient of the signal (i.e. features), applies
local learned transformations in the gradient domain, and then
solves Poisson’s equation to obtain global (i.e. not localized in their
receptive �eld) feature updates in the scalar domain, thereby placing
gradients as �rst class citizens in our framework.

Operating primarily in the gradient domain is a crucial property
for learning over meshes. Indeed, throughout the literature, we ob-
serve that previous intrinsic learning methods consistently identify
the gradient operator as a critical component of their architectures,
with some noting the framework signi�cantly underperforms with-
out gradient features (e.g. Figure 6 in Sharp et al. [2022]).
Whereas prior methods for learning on surfaces trade o� along

several key properties (see Table 1), our method yields the �rst
network that satis�es them simultaneously:

(1) Full spectrum. Our network features retain their native
frequency components without any spectral truncation, pre-
serving high-frequency details while avoiding expensive pre-
computation of eigenbases.

(2) Global receptive �eld. As an integral-like operator, our
proposed network block e�ciently propagates local feature
updates across the entire surface.

(3) Triangulation agnosticism. The core mechanism in our
network approximates a well-de�ned object: the continuous
Poisson’s equation. This allows PoissonNet to produce near-
identical predictions under changes in mesh discretization
(subdivision, simpli�cation, remeshing, corruption, etc.).

(4) E�cient computational footprint. Our method is scalable:
PoissonNet can operate on high-resolution meshes and forgo
lengthy pre-computation before training and inference, which
facilitates training on large datasets.

We empirically validate these properties on a range of canonical
applications, such as shape segmentation, deformation, and learning
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high-frequency signals on surfaces. In all experiments, PoissonNet
achieves state-of-the-art performance, while remaining far more
e�cient than previous methods with comparable capabilities. Code
is available at: https://github.com/ArmanMaesumi/poissonnet

2 Related Work

Learning on surfaces. The �rst works to apply deep learning to
surfaces considered point clouds sampled from the surface, starting
with the seminal PointNet [Qi et al. 2017a], later extended to use
a local receptive �eld [Qi et al. 2017b; Qian et al. 2022; Wang et al.
2019] and attention mechanisms [Wu et al. 2024, 2022; Yu et al. 2022;
Zhang et al. 2022; Zhao et al. 2021]; see [Guo et al. 2020] for a survey.
However, without knowledge of connectivity, point clouds cannot
encode highly-detailed geometry, and the networkmay get confused
by nearby points representing geodesically distant regions.
To leverage the surface’s connectivity, several approaches aim

to generalize the notion of a convolution, either by �attening local
patches to the plane [Boscaini et al. 2016; Bronstein et al. 2017;
Fey et al. 2018; Masci et al. 2015; Monti et al. 2017; Simonovsky and
Komodakis 2017], or via notions of equivariance [DeHaan et al. 2020;
He et al. 2020; Mitchel et al. 2021; Poulenard and Ovsjanikov 2018;
Sun et al. 2020; Wiersma et al. 2020; Yang et al. 2021]. Others treat
the mesh as a graph [Simonovsky and Komodakis 2017], or apply a
Recurrent Neural Network with random walks on the mesh [Lahav
and Tal 2020]. MeshCNN [Hanocka et al. 2019] learns task-speci�c
pooling strategies along with edge collapses. In contrast to our
method, these methods are not triangulation agnostic, i.e., changes in
surface triangulation produce drastically di�erent outputs, causing
such networks to 1) learn spurious features that do not generalize
to out-of-distribution geometries, and 2) mistakenly couple the
mesh’s resolution with the network’s receptive �eld. We note that,
in this context, triangulation agnosticism does not imply that a
given architecture is invariant to all discretizations of an underlying
surface; e.g. our method is still subject to discretization error.

Intrinsic learning on meshes. In order to perform triangulation-
agnostic learning on surfaces, many works turn to di�erential op-
erators derived from the meshes themselves, whose constructions
are guaranteed to be triangulation agnostic. One popular approach
is to leverage the spectral domain, performing a Fourier-like trans-
form using the eigenmodes of the Laplace-Beltrami operator. Several
methods leverage the Functional Maps Framework [Ovsjanikov et al.
2012] in a deep learning setting [Attaiki et al. 2021; Donati et al.
2020; Halimi et al. 2019; Litany et al. 2017; Roufosse et al. 2019; Yi
et al. 2017]. HodgeNet [Smirnov and Solomon 2021] extends spec-
tral learning to vector �elds and area forms. However, the spectral
basis is represented as a dense matrix, which has a large memory
footprint and is slow to compute (see Table 1). Hence, these meth-
ods operate in the low-frequency part of the spectrum (the �rst :
eigenfunctions), hindering their ability to represent high-frequency
signals. By contrast, PoissonNet does not rely on a spectral basis,
and hence can capture the full frequency spectrum of signals.

Di�usionNet [Sharp et al. 2022] stands as the work closest to ours.
Similar to our method, it propagates signals over surfaces by solving
a PDE: the homogeneous heat equation. This PDE is often approxi-
mated via a single implicit integration step. In a learning framework,

however, this becomes highly ine�cient, as each learned di�usion
time induces a distinct linear system, each needing a factorization
that cannot be precomputed. As such, Di�usionNet instead solves
its PDE in the spectral domain, restricting to the lower frequency
range, which, as explained above, leads to loss of expressivity (see
Fig. 4). Since the heat equation acts only as a radially-symmetric
�lter (see Fig. 6 in their paper), Di�usionNet uses the gradient op-
erator to re-introduce directionality into their �lters post-factum.
Moreover, the homogeneous heat equation converges to a constant
global average at steady state, erasing all structure when propa-
gating features globally. By contrast, we directly solve Poisson’s
equation, which by construction: o�ers nontrivial global feature
couplings (rather than producing constant signals); incorporates
directional features directly into the PDE; and forgoes spectral bases
entirely. These properties translate to superior performance and
e�ciency in several experiments, as discussed in Section 6.

DeltaConv [Wiersma et al. 2022] stands as another close work, as
it de�nes convolutions on surfaces by combining local di�erential
operators. However, since the operators are local, these convolu-
tional layers have a local receptive �eld, which geometrically shrinks
as the mesh is re�ned—requiring a deeper network for propagation
of signals across the mesh, implying the method is not agnostic
to sampling density. This is in contrast to our method, in which
each layer has a global receptive �eld that approximates a well-
de�ned continuous operation; i.e. , di�erent triangulations of the
same underlying geometry produce nearly identical outputs, leading
to triangulation agnosticism. Additionally, DeltaConv is published
as a point-based method, i.e. , their operators are de�ned through
K-nearest neighbors, yielding artifacts in our experiments.

Neural Jacobian Fields (NJF) [Aigerman et al. 2022] also stands as
inspiration for our method—though it is not a general learning ar-
chitecture, but rather a method for learning deformations of meshes.
NJF trains a standard MLP to predict deformation gradients (Jaco-
bians) as a neural �eld. Poisson’s equation is then used in the �nal
layer to produce a mapping from the deformation’s gradient. In NJF,
Poisson’s equation is not a means to propagate learned features over
meshes. By contrast, in our method, each consecutive network block
solves Poisson’s equation to globally propagate learned features over
the domain. Additionally, NJF predicts an extrinsic signal (i.e. not
de�ned in a local coordinate frame), which is then projected into the
mesh’s tangent space. This is in contrast to our intrinsic transforma-
tions of gradients in the mesh’s tangent space, which is critical for
learning tasks, as it makes each network block rotation-invariant,
leading to more e�cient learning and robustness.

Learning Mesh Deformations. As a primary benchmark and ap-
plication for our network, we show that PoissonNet can serve as a
strong backbone for learning mesh deformations. Mesh deformation
is a long-standing problem in geometry processing with applica-
tions in animation [Sumner and Popović 2004], registration [Bogo
et al. 2014a], and geometric modeling [Gao et al. 2019].

Gradient-domain computation commonly appears in this scenario,
using maps’ Jacobians for surface parameterization [Aigerman and
Lipman 2013; Du et al. 2020; Kovalsky et al. 2014; Lévy et al. 2002;
Li et al. 2018; Lipman 2012; Liu et al. 2008; Myles and Zorin 2013;
Rabinovich et al. 2017; Schüller et al. 2013; Smith and Schaefer 2015;
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Fig. 2. We illustrate our PoissonNet block on a surface patch of a triangle mesh. Our block begins by computing spatial gradients of the incoming scalar

features—for demonstrative purposes we depict the signal as having three channels (shown as green, orange, blue) with color indicating signal intensity. The

gradient features are transformed locally in each tangent basis (denoted by basis vectors D1,D2) via a Vector MLP, which induces a linear combination of

rotated and scaled gradients on each face. We then solve a global Poisson system using the transformed vector fields, producing new scalar features on vertices

that are updated locally using a scalar (per-vertex) MLP. This process is repeated for # blocks, thereby producing a final feature representation on the shape.

Weber and Zorin 2014] or for deformation [Lipman et al. 2004;

Sorkine et al. 2004; Sumner and Popović 2004; Yu et al. 2004].

Many other ways to parameterize deformations as rigs have been

developed over the years [Fulton et al. 2019; Jacobson et al. 2011,

2014; Ju et al. 2005; Kavan et al. 2008; Lipman et al. 2008], which

have been used in a deformation-learning setting, e.g., using skele-

tons [Holden et al. 2015; Li et al. 2021; Liu et al. 2025; Xu et al. 2020,

2019], handles [Liu et al. 2021], or cages [Sun et al. 2024; Wang

et al. 2020]. Some methods combine rig-driven deformation with

non-linear residuals per discrete element [Bailey et al. 2020, 2018;

Romero et al. 2021; Yin et al. 2021; Zheng et al. 2021].

Alternatively, for given template meshes [Bogo et al. 2014a; Os-

man et al. 2020; Varol et al. 2017; Zu� et al. 2017] one can directly

predict a �xed-size tensor of vertex coordinates [Anguelov et al.

2005a; Bogo et al. 2016; Shen et al. 2021], possibly by directly learn-

ing the deformations’ gradients [Gao et al. 2018; Tan et al. 2018].

We evaluate PoissonNet as a backbone, used together with a �nal

layer provided by NJF [Aigerman et al. 2022], discussed above, as it

provides a triangulation-agnostic method for predicting deforma-

tions, which has since proven highly e�ective in scenarios such as

temporal sequences [Muralikrishnan et al. 2024], face rigging [Qin

et al. 2023], and text/image-driven generative deformation [Gao

et al. 2023; Kim et al. 2025; Yoo et al. 2024].

3 Preliminaries

Tangent spaces and local coordinates. We consider meshes with

verticesV and triangles F. Each triangle t ∈ F de�nes its own tangent

space, denoted)t — a 2-dimensional linear subspace ofR3, consisting

of all vectors tangent to t. We choose an (arbitrary) orthonormal

basis Bt = {*1,*2}, *8 ∈ R
3 which serves as the tangent space’s

local coordinate frame: any vector E ∈ R3 that lies on triangle t is

a tangent vector, which can be written equivalently as a 2-vector,

Ẽ ∈ R
2 in the local coordinate system of Bt, as the unique vector

satisfying
∑
8 Ẽ8*8 = E . While we derive intuition from the geometric

2-d tangent plane, we will alternatively treat it as the complex plane

C, with each tangent vector de�ned as E ∈ C.

Piecewise linear functions and their gradients. Hence, we follow

the standard de�nition of piecewise linear functions (i.e. linear �nite

elements): we consider functions that are scalars assigned to the

mesh’s vertices. We denote such a function as B ∈ R
|V | , with B8

being the scalar value associated with vertex 8 . Such scalar values

on the vertices of a single triangle, B8 , B 9 , B: uniquely de�ne an a�ne

function 0(?) : t→ R over the triangle, which interpolates these

three values at the triangle’s vertices, i.e., 0(E8 ) = B8 . Thus, the

signal B de�nes a piecewise-linear function over the triangles of

the mesh, i.e., it is a linear function when restricted to one of the

triangles. Therefore, its gradient is constant within the triangle and

is a tangent vector that we denote (in the local coordinate system

Bt) as 5 ∈ R
2. The gradient 5t of a speci�c triangle t can be obtained

from the vertex values by applying the linear gradient operator

which we denote ∇t, i.e., 5t = ∇t (B8 , B 9 , B: ). We use the notation 5 to

refer to the tensor of stacked gradient vectors over all the faces of

the mesh. Finally, we consider multiple simultaneous signals, called

channels, B1, B2, ..., B2 , where each channel B8 is a scalar �eld, whose

corresponding gradient �eld is 5 8 .

Poisson’s equation. As with many graphics applications that op-

erate in the gradient domain, our method relies on the variational

formulation of Poisson’s equation. Given a set of tangent vectors 5 ,

the variational perspective of the Poisson equation �nds the scalar

function whose gradient best matches 5 . In the continuous setting,

this translates to the following least squares variational objective

D =min
B

∫
Ω

| |∇B − 5 | |23�. (1)

Since our domain is a mesh, 5 is constant over each face. Hence, the

above integrand becomes constant over each triangle, making the

least squares problem reduce to a sparse linear system (see Eq. 5).

4 PoissonNet

Our method builds on the insight that using Poisson’s equation as

the core mechanism in an intrinsic learning architecture leads to sev-

eral desirable properties. Poisson’s equation can be solved e�ciently
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Fig. 3. PoissonNet stacks identical blocks that transform features locally in

the gradient domain and globally in the functional domain.

without resorting to lossy spectral approximations while serving

as a truly global operator over the surface. These characteristics

make PoissonNet a strong backbone for learning highly detailed

signals on surfaces, where spectral approximations fail; learning

deformations, where global operators are necessary; and common

semantic tasks, such as mesh segmentation.

Our architecture is comprised of PoissonNet blocks (depicted in

Figures 2 and 3), which interleave two simple operations on the

incoming scalar features B:

(1) Local step in the gradient domain (Sec 4.1). Compute the gra-

dient of the incoming signal, ∇B , and locally (per-face) apply

a learned transformation, producing gradient �eld 5 .

(2) Global step (Sec 4.2). Solve Poisson’s equation using 5 , induc-

ing a scalar update, D, that globally couples features on all

vertices. Finally, output a learned transformation on B and D.

In the following sections we describe these steps in detail.

4.1 Local step in the gradient domain

Given a scalar feature �eld with � channels de�ned on the vertices

of a mesh, B ∈ R |V |×C, we �rst compute its corresponding gradient

�eld, 5 ∈ C |F |×C, using the intrinsic gradient operator

5 ≔ ∇B . (2)

These vector-valued quantities reside in the tangent space of each

triangle, which is denoted by an orthonormal basis {D1, D2, =} where

D1 andD2 span the tangent plane and= is the face normal.We express

these gradients as a complex number I = 0 + 18 with 0 and 1 being

the coe�cients of D1 and D2, and hence transformations of these

quantities can be represented by products with complex numbers,

which induces a scaling and rotation within the tangent plane.

As is common when learning transformations of vector-valued

quantities, we parametrize gradient transformations with learned

complex weight matrices [Gao et al. 2024; Sharp et al. 2022; Wiersma

et al. 2020, 2022]. Geometrically, the transformed gradient features

become linear combinations of rotated and scaled gradients at each

face. Notably, the choice of basis at each face is arbitrary up to a

rotation (i.e. any orthonormal basis in the triangle can be chosen).

Hence, it is desirable for our gradient transformation to maintain

equivariance under linear coordinate transformations. As proposed

by Wiersma et al. [2020], we apply non-linearities to gradient mag-

nitudes only, which preserves equivariance by ensuring that the

gradient’s directional component transforms consistently with the

underlying coordinate system — i.e. the phase of each gradient fea-

ture transforms linearly. The gradient transformation can be written

succinctly on the 8-th face as

f8 ←Wf8 ⊙
f (r + b)

r
(3)

where f8 ∈ C
C are the incoming gradient features on the face, and

W ∈ C
C×C is a learned complex weight matrix. We write r ∈ R

C

as the vector holding magnitudes of each element ofWf8 . Finally,

b ∈ RC is a learned bias parameter, and f denotes a non-linearity;

⊙ and division by r are taken elementwise.

To enrich our gradient transformations, we additionally use the

original scalar signal, B , to modulate the incoming gradients (be-

fore the transformation above). This allows the network to more

discriminately transform gradient features using the scalar signal as

intrinsic positional information. Let Bface ∈ R
F×C denote the scalar

features averaged onto faces. We modulate the phase and magnitude

of gradient features via the element-wise product

5 ← (f ($ ) + n) 5 48) where $ , ) =MLP(Bface) (4)

where the scale factors $ and angular rotations ) are given by a

small multi-layer perceptron acting point-wise on Bface. We apply

a softplus activation, f , to the scale factors; adding a small epsilon

ensures positivity.

4.2 Globally propagating gradient features

Once gradient-domain features have been transformed, we integrate

them back into scalar features via a Poisson solve. Concretely, let

f ∈ R2F×C represent the stacking of components of all face-based

transformed gradient features. We recover a global update to the

scalar features by solving on each channel the sparse linear system

LD = ∇TM5 , (5)

where L is the cotangent Laplacian [Pinkall and Polthier 1993],M is

the mesh’s mass matrix, and ∇T represents the divergence operator.

Since the solution D is unique only up to an additive constant, we

nullify its mean, centering the solution at zero. Divergence being a

coordinate-free operatormeans that the Poisson solution is invariant

to the choice of tangent bases. Finally, we apply a point-wise MLP

to the concatenation of the input features B and Poisson solution D.

The feature update on the 8-th vertex becomes

B8 ← MLP( [B8 , D8 , 28 ]) . (6)

where 28 are experiment-speci�c conditional features (see Sec. 6).

Since the Poisson equation is an elliptic PDE, it can be solved

e�ciently without approximate timestepping or spectral methods,

and its discretization admits a single pre-factorable sparse linear

system that can be reused across all network blocks. These qualities

allow PoissonNet to 1) e�ciently scale, both in the size of datasets

and the meshes themselves (i.e. the number of vertices); and 2) forgo

lossy spectral approximations that are used in previous methods.
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Remark. Applying Poisson’s equation to our network’s gradi-

ent features is analogous to that of a global attention mechanism

with �xed geometry-dependent weights. The inverse Laplacian

L
−1 implicitly de�nes a Green’s function � (8, 9) that weights the

contribution of the divergence at vertex 9 to the update at ver-

tex 8 . In this view, � (8, 9) serves as a global attention kernel over

the mesh, aggregating gradient-domain signals from all triangles

max

min

into each vertex’s scalar feature update—the inset

visualizes � w.r.t a vertex on the character’s left

shoulder. This construction is e�cient, in that the

attention kernel is de�ned through sparse mesh op-

erators (rather than materializing a quadratic atten-

tion matrix), and has the added bene�t of naturally

adapting to the underlying mesh geometry.

5 Implementation

E�cient construction of operators. We employ a custom PyTorch

CUDA extension for the construction of our discrete mesh opera-

tors; namely the Laplacian, gradient, and mass matrices, allowing

our training pipeline to forgo lengthy precomputation and instead

compute necessary operators e�ciently on-the-�y during training.

This greatly reduces friction in experimentation and allows our

method to be applied directly to large datasets. Notably, our method

does not require precomputing a Laplacian eigenbasis, which often

relies on CPU-based generalized eigendecomposition routines that

are too slow to use during training and may take several hours

to precompute even for moderately sized datasets. These quali-

ties make PoissonNet more practical for large scale training and

rapid experimentation, and additionally more �exible in pipelines

50k 100k 150k 200k 250k
num. vertices

10 1

100

101

102

latency (ms)

546x faster

13x faster

our grad
igl grad
our lap
igl lap

with non-static training examples (e.g.

when applying data augmentation to

meshes). The inset compares our CUDA

kernels against LibIGL [Jacobson et al.

2018]. Our CUDA kernels emit sparse

mesh operators directly using PyTorch’s

COO representation and support batch-

ing for homogeneous meshes (i.e. those

with identical connectivity structure).

Solving Poisson’s equation. We discretize the Poisson equation

as in Equation 5. Our Poisson systems are solved using a shared

Cholesky factorization of the Laplacian matrix, L, across all network

blocks and channels, and hence the simultaneous per-channel linear

systems are e�ciently solved in parallel. We use Cholespy [Nicolet

et al. 2021], a CUDA-based sparse linear solver. Our Laplacian uses

zero Neumann boundary conditions. Following Poisson’s variational

form (Eq. 1), the inhomogeneous Neumann condition, mD/m= = 5 ·=,

appears naturally, with = being the outward boundary normal. The

Poisson solution, D, is centered to obtain a unique solution.

6 Results and Experimentation

In the following section, we evaluate PoissonNet on several applica-

tions, comparing it to current state-of-the-art in learning on meshes.

We focus on methods that perform intrinsic learning using di�eren-

tial operators, as the limitations of previous approaches have been

demonstrated. See Section 2 for a full discussion of these methods.

ti
m
e

Reference Ours Di�usionNet

Fig. 4. Comparison of architectures for representing highly-detailed signals.

The networks are used to parametrize the evolution of a crumpling paper

through time w.r.t. a rest configuration (see supplemental video). The mesh

has 300k triangles and is available on TurboSquid [IndefinGaming 2025].

Experimental setup. Across experiments we employ the same Pois-
sonNet with varying numbers of network blocks, using 128-width
blocks in all experiments. We use xyz vertex coordinates as our
input features unless otherwise speci�ed. Data augmentation is ap-
plied when applicable; we speci�cally augment shape orientation
and global scale. Our experiments primarily compare to Di�usion-
Net [Sharp et al. 2022] and DeltaConv [Wiersma et al. 2022], as
they are leading methods for learning on surfaces using di�erential
operators. We include further details in Section A.

6.1 Analysis of Full-Spectrum Learning

10 5

10 3

10 1

power

truncated
basis

pde solve

PoissonNet
DiffusionNet

101 102 103
10 5

10 3

10 1
retains
detail

mlp

frequency

Figure 4 demonstrates that our method
is capable of representing extremely rich
geometric signals. Here, we train Pois-
sonNet to represent the evolution of an
animated crumpling paper ball that has
300k faces [Inde�nGaming 2025]. We pa-
rametrize the sequence by a scalar time
C , which is used to condition the input of
each network block’s MLP (as in Eq. 6).
To further challenge our method, we only
use a total of ∼650: parameters, whose
memory footprint (i.e., compression ra-
tio) constitutes 2% percent of the original
sequence size; nevertheless, our method
manages to preserve most of the �ne details of the geometry.
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source field poisson solve heat solveshort time long time solutions at y=0.5

converges to global mean

(ours) [Sharp et al., 2021]

Fig. 5. Poisson and heat solutions on an input scalar field. The Poisson equation (inhomogeneous) retains structure; whereas the heat equation (homogeneous)

converges to a global mean, losing all structure over long-time heat flow. Right plot : solution values along a cross-section at ~ = 0.5 (do�ed lines).

We compare our method’s performance to that of Di�usion-
Net [Sharp et al. 2022] by training it with the same number of
parameters. Due to the limitations of the heat equation discussed
in Section 2 and Figure 5, Di�usionNet exhibits clear loss of detail
and over-smoothing, struggling to represent the high-frequency
wrinkles of the crumpled paper. The �rst inset further compares
power spectra of the feature maps learned by both networks, con-
�rming that our network is able to use higher frequency features to

2k 4k 6k 8k
iterations

10 2

10 1

loss

PoissonNet
D.Net k = 32
D.Net k = 128
D.Net k = 512

represent the evolving geometry, while
Di�usionNet encounters the expected is-
sues that arise from the use of the heat
equation. Additionally, the inset loss plot
shows the clear e�ect of Di�usionNet’s
eigenbasis size (denoted by :) on training
dynamics, as compared to our method.
Both methods employ the NJF head de-
scribed in Section 6.2.

6.2 Shape Deformation

We demonstrate that PoissonNet is capable of accurate, global rea-
soning, by learning to repose arbitrary humanoid character models
without canonical poses or rigs, which requires global understand-
ing of input geometry (joint articulation is an inherently long-range
phenomenon, acting on kinematic chains). In particular, we accrue
a dataset of 16k source-target mesh pairs generated by the SMPL-X
human body model, using poses from the MOYO dataset [Pavlakos
et al. 2019; Tripathi et al. 2023]. These poses are comprised of motion-
captured yoga sequences—containing “pretzel-like” contortions of
human bodies, which are signi�cantly more challenging to repose
than traditional body poses. We deform a given source mesh into
the target pose, conditioning the network on the SMPL-X pose pa-
rameters of the target. Our network uses �ve PoissonNet blocks,
totaling 1.4 million parameters.
To conduct a fair comparison between network backbones, we

employ the NJF deformation head proposed by Aigerman et al.
[2022], which is a state-of-the-art method for parametrizing de-
formations. Brie�y, the NJF head receives as input three gradient
�elds associated with the gradients of the deformation map’s G,~, I
components—i.e., a per-face Jacobian, �8 ∈ R2×3. The NJF head then
produces a �nal deformation by solving Poisson’s equation w.r.t
the predicted Jacobians. We modify each architecture to predict the
necessary Jacobian �eld (see Section A.2 for details), and supervise
the predicted deformations using NJF ’s proposed loss,

LNJF =

∑
<8 · ∥E

tar
8 − D8 ∥

2 +
∑

U8 · ∥ �
tar
8 − ∇D8 ∥

2, (7)

where <, U hold lumped vertex masses and face areas, and D is
the solution to Equation 5. The ground truth vertex positions and
Jacobians are denoted as E tar and � tar := ∇E tar respectively.
In Figures 1 and 12 we show qualitative results of our method,

and Figure 6 compares PoissonNet to that of a Di�usionNet back-
bone. Our network not only faithfully captures deformations of
SMPL-X human bodies, but also boasts remarkable generalization
to in-the-wild character models. We �nd that Di�usionNet is unable
to retain high-frequency details in these shapes, often distorting
their hands and faces (see Figure 6). The inset plot re�ects a sim-
ilar conclusion: our model converges more quickly and reaches
a much lower loss than the alternative backbones. We note that
DeltaConv was unable to converge to a meaningful result on this

50k 100k 150k 200k
iterations

0.05

0.1

0.2
test loss

7.2x

1.4x

PoissonNet
DiffusionNet
DeltaConv

benchmark, likely due to its KNN-based
di�erential operators, which are unreli-
able for surfaces with nearly-touching
parts (e.g. in yoga poses). Finally, we show
that PoissonNet is even able to trans-
fer motion capture sequences to out-of-
distribution characters, generating real-
istic motion sequences (see Figure 7 and
supplemental video).

6.3 Semantic Segmentation

We demonstrate that PoissonNet surpasses state-of-the-art perfor-
mance on semantic segmentation of meshes, while remaining far
more e�cient than previous methods. In particular, we train a 3-
block PoissonNet (650K parameters) on segmentations of the yoga
motion capture shapes used in Section 6.2 (totaling 32k training
samples). We use the canonical SMPL-X segmentation map to de-
limit 27 unique body parts, distinguishing symmetric body parts (e.g.
left/right forearm are separate classes). Our network achieves 97.03%
test accuracy; Di�usionNet achieves 96.12% while requiring an ad-
ditional 16 hours of precomputation and 160gb of memory overhead

due to the need for eigenbases; and DeltaConv attains 88.2% but is

5k 10k 15k
iterations

0.8

0.9

1.0
test accuracy

+16hr

3x iter

PoissonNet
DiffusionNet
DeltaConv

unable to reliably distinguish between
left/right-sided parts, likely due to its lo-
cal construction (see inset accuracy plot).
Each method shows negligible variability
in peak accuracy between runs (< 0.5%).
We additionally train our network on the
human body dataset ofMaron et al. [2017].
This dataset is an amalgamation of human
meshes obtained from various sources
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Ours Di�usionNet
(w/ NJF)

Target

(reference)
Source Ours Di�usionNet

(w/ NJF)

Target

(reference)
Source

Fig. 6. We demonstrate that PoissonNet surpasses state-of-the-art intrinsic learning backbones for representing source-to-target deformations of humanoid

characters. Here, we compare our deformations to that of Di�usionNet [Sharp et al. 2022], using diverse poses from the MOYO dataset [Tripathi et al. 2023].

PoissonNet is able to faithfully match target poses while retaining intricate surface details from the source geometry, even for models that are substantially

out of distribution (e.g. the top le� mutant, and the Buck Bunny). We observe that Di�usionNet is unable to retain surface details, causing many body parts to

become distorted (see close-ups). We additionally show in-distribution examples in the bo�om half of the figure—of which these distortions remain noticeable.
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Table 2. Comparison of methods on SHREC11 shape classification.

Method Accuracy

MeshCNN[Hanocka et al. 2019] 91.0%
HSN[Wiersma et al. 2020] 96.1%
MeshWalker[Lahav and Tal 2020] 97.1%
PD-MeshNet[Milano et al. 2020] 99.1%
HodgeNet[Smirnov and Solomon 2021] 94.7%
FC[Mitchel et al. 2021] 99.2%
Di�usionNet[Sharp et al. 2022] 99.5%
DeltaConv[Wiersma et al. 2022] 99.6%
PoissonNet (ours) 100.0%

[Adobe 2016; Anguelov et al. 2005b; Bogo et al. 2014b; Giorgi et al.
2007; Vlasic et al. 2008]. The meshes are segmented into eight unique
body parts. We report our test-time accuracy in Table 4 alongside
many previous methods as they were reported by Wiersma et al.
[2022]. Our network matches state-of-the-art performance on this
benchmark. Predicted segmentation maps for both datasets are
shown in Figures 1 and 13.

6.4 Classification

We train PoissonNet on the SHREC11 shape classi�cation bench-
mark [Lian et al. 2011], which contains 30 categories of shapes with
20 shape variations in each category. We employ a 3-block Poisson-
Net, identical to that of Section 6.3. Following previous methods
[Ezuz et al. 2017; Hanocka et al. 2019; Sharp et al. 2022; Wiersma
et al. 2022], we train and test on simpli�ed meshes, using just 10
examples per class for training, and averaging peak test accuracy
over �ve training runs. Our network achieves a perfect accuracy of
100% on the held out samples. Results are summarized in Table 2.

6.5 Analysis of Architectural Properties

101

102

103

latency (ms)

21.3x

precompute

4k 16k 65k

101

102
inference

PoissonNet
DiffusionNet
DeltaConv

num. vertices

Training & Inference E�ciency. Pois-
sonNet’s construction is e�cient, mak-
ing it straightforward to apply to large
datasets and meshes with tens of thou-
sands of vertices. Our method circum-
vents costly precomputation while being
accurate and maintaining high through-
put. These bene�ts extend to Poisson-
Net’s forward latency on large meshes.
In Table 3, we compare the training e�-
ciency of our networkwith previous state-
of-the-art methods on the experiment de-
tailed in Section 6.2. Additionally, the in-
set �gures compare the latency of these
networks on meshes of increasing size.
PoissonNet provides the best trade-o� be-
tween precompute time, throughput, and
accuracy. For fair comparison, we endow Di�usionNet with our
CUDA kernels for precomputing Laplacian and gradient operators.

We additionally compare the memory footprint of our Cholesky
factorizations to methods that rely on Laplacian eigenbases. Al-
though Cholesky factorization, in general, leads to possibly dense

Table 3. Compute e�iciency on our reposing experiment, alongside single-

mesh forward latency. Our method has minimal precompute while maintain-

ing high throughput and accuracy. By comparison, Di�usionNet (spectral)’s

eigenbasis precompute takes several hours and demands large memory

overhead, while Di�usionNet (direct) is too expensive to train. For fair com-

parison, both PoissonNet and Di�usionNet use our operator CUDA kernels.

Total compute expenditure

Method Precompute Train Total

PoissonNet <1min 9058 batch/hr 22.1hr
Di�usionNet
(spectral)

+9hr
+80GB mem.

11438 batch/hr 26.5hr

DeltaConv <1min 9015 batch/hr 22.2hr

Single mesh forward latency (precompute+inference in ms)

Method 4k verts 16k verts 65k verts

PoissonNet 9.6+6.5ms 49.4+18.2ms 251+75.9ms
Di�usionNet
(spectral)

245+14.2ms 770+16.4ms 5340+39.9ms

DeltaConv 12.7+5.8ms 40.8+22.7ms 207+103ms

triangular matrices, we empirically �nd that our Cholesky factors
scale within reasonable constant factors of $ (= log=) nonzero el-
ements, with = being the number of mesh vertices and constant
factors ranging from 3 to 6. For example, the Armadillo mesh subdi-
vided to = = 800: vertices yields a decomposition requiring <200MB
memory when accounting for sparse matrix storage overhead. A
moderately-sized eigenbasis on the same mesh yields comparable
memory usage; e.g., : = 128 eigenvectors requires = · : ≈ 390MB.

in
pu
t

in
pu
t

ou
rs

D
.N
etRobustness. In Fig. 8 we show that Pois-

sonNet’s predictions remain stable un-
der changes to triangulation; e.g. corrup-
tion, simpli�cation, subdivision, and par-
tial surfaces. Additionally, PoissonNet is
more robust to surface holes compared to Di�usionNet, which intro-
duces signi�cant distortion around the hole (see inset). We attribute
this to properties of Poisson’s equation discussed by Stein et al.
[2018]. Namely, the natural boundary conditions that appear in our
inhomogeneous Poisson equation indicate that our feature �elds
will not become overly distorted around surface holes.

Learning local signals. Given that PoissonNet’s spatial �lter is a
purely global operator, one may wonder if the network is suitable for
learning local, multi-scale signals; e.g., could PoissonNet predict the
heat kernel signatures (HKS) [Sun et al. 2009] on a given shape? We
indeed �nd that our network is capable of learning such signals by
training a 3-block PoissonNet on heat kernel signatures computed
on shapes from the Thingi10k dataset [Zhou and Jacobson 2016] that
have been pre-processed by fTetWild [Hu et al. 2020]. We retain all
shapes that contain a single connected component and have more
than 500 vertices, leaving 7500 shapes. We use an 85-15 train-test
split. For each shape, we sample 16 HKS feature �elds using time
values logarithmically spaced in the interval [0.01, 1]. Each channel
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timesource

Fig. 7. Our reposing network learns a smooth parametrization of humanoid poses that generalizes to out-of-distribution shapes. We repose several characters

using pose sequences from the MOYO dataset [Tripathi et al. 2023] and observe smoothly varying, realistic movements in accordance with that of a human.
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19k faces 14k faces 7k faces 75k faces

partial mesh

16k faces

93.1% 91.7% 95.5% 89.7% 92.8%

Fig. 8. Our network is robust to changes in discretization. We apply our networks to a mesh under various such changes and observe stable predictions. From

le� to right: ground truths, our baseline prediction; and our predictions under corruption, quadric decimation, subdivision, and a partial (incomplete) mesh.

For segmentations we provide accuracies w.r.t. the ground truth—in the case of topological changes, we use nearest-vertex matching to compute accuracy.
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Fig. 9. Outputs from our PoissonNet trained on multi-scale heat kernel signatures. Despite using a purely global operator, PoissonNet is able to capture HKS

fields across a diverse array of shapes. All shapes shown are from the held out test set.
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50k 100k 150k 200k 250k
iterations

0.05

0.1

0.2

test loss

N.Blocks: 5, VecMLP: 3, Mod.: True
N.Blocks: 5, VecMLP: 3, Mod.: False
N.Blocks: 3, VecMLP: 3, Mod.: True
N.Blocks: 5, VecMLP: 1, Mod.: True
N.Blocks: 3, VecMLP: 3, Mod.: False
N.Blocks: 3, VecMLP: 1, Mod.: True
N.Blocks: 5, VecMLP: 1, Mod.: False
N.Blocks: 3, VecMLP: 1, Mod.: False

Fig. 10. Hyperparameter sweep over various PoissonNet configurations for

our shape deformation experiment. N.Blocks denotes number of Poisson-

Blocks, VecMLP denotes the number of layers in each block’s Vector MLP,

andMod denotes the usage of our proposed vector feature modulation step

given by Equation 4, which is applied before each Vector MLP.

is independently normalized to [0, 1] to stabilize learning; hence,
our HKS predictions are meaningful up to a global scaling. Our
network predicts all feature maps simultaneously and is supervised
using a standard MSE loss. Figure 9 shows that PoissonNet is able
to represent heat kernel signatures on a diverse array of out-of-
distribution shapes.

Ablating design choices. Figure 10 shows the e�ect of various de-
sign decisions with respect to the shape deformation experiment
in Section 6.2. We observe that, all else being equal, employing
our modulation step (Eq. 4) improves network performance; simi-
larly, using larger Vector MLPs (more layers) and more PoissonNet
blocks steadily improves performance. The blue curve represents
our primary network used in all results.

7 Conclusion

We have demonstrated that PoissonNet’s local-global approach
sidesteps several trade-o�s associated with previous intrinsic ap-
proaches — resulting in a network that is e�cient, scalable, and
robust to out-of-distribution geometry. It serves as a practical tool
enabling several learning applications, including animation of intri-
cately detailed character models (without rigs), semantic segmenta-
tion, and compression of high-frequency geometry.

Limitations. Our method is not well suited for learning on shapes
with multiple connected component; as our intrinsic Poisson equa-
tion will operate indendently on each component. This drawback is
also shared by other intrinsic methods based on di�erential opera-
tors [Sharp et al. 2022; Smirnov and Solomon 2021; Wiersma et al.
2020]. The utility of these networks would be greatly expanded
if they generalized to multi-component meshes, which dominate
the corpus of in-the-wild models. Facilitating this learning in a
principled way, without ad-hoc KNN-based solutions, remains an
unsolved problem. Moreover, extremely poor discretizations (e.g.

sliver triangles) may lead to numerical instability for each of these
approaches; e.g., by distorting the solution to Poisson’s equation.
Next, although PoissonNet requires less computational resources
than comparable methods, it is still too slow to enable real-time
applications on very large meshes. Finally, while each block of Pois-
sonNet has global support, it has a decaying receptive �eld; i.e., the
coupling between vertices diminishes with distance. We consider
the investigation of more general classes of signal propagation using
di�erent PDEs, such as the wave equation, as important future work.

Acknowledgments

This material is based upon work supported by: National Science
Foundation Graduate Research Fellowship under Grant No. 2040433;
NSERC Discovery grant RGPIN-2024-04605, “Practical Neural Ge-
ometry Processing”; FRQNT Établissement de la relève professorale
365040, “Calcul rapide et léger des déformations à l’aide de réseaux
neuronaux”; and a gift from Adobe. Part of this work was done
while Arman Maesumi was an intern at Adobe Research. The au-
thors thank Qingnan Zhou for providing preprocessed Thingi10k
data, as well as Nick Sharp, Alec Jacobson, and Derek Liu for fruitful
discussions.

References
Adobe. 2016. Adobe Mixamo 3D characters. www.mixamo.com..
Noam Aigerman, Kunal Gupta, Vladimir G Kim, Siddhartha Chaudhuri, Jun Saito, and

Thibault Groueix. 2022. Neural jacobian �elds: Learning intrinsic mappings of
arbitrary meshes. SIGGRAPH (2022).

B
lo

c
k

 1
B

lo
c
k

 2
B

lo
c
k

 3

Fig. 11. Feature maps given by the Poisson solves across a pre-trained three

block PoissonNet. We visualize a fixed channel for all feature maps and find

their qualitative appearance to be similar across shapes.

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.



1:12 • Maesumi, A. et al

Noam Aigerman and Yaron Lipman. 2013. Injective and bounded distortion mappings
in 3D. 32, 4 (2013).

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2005a. SCAPE: Shape Completion and Animation of People. In
SIGGRAPH.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2005b. SCAPE: Shape Completion and Animation of People. ACM
Trans. Graph. 24, 3 (2005), 408–416.

Souhaib Attaiki, Gautam Pai, and Maks Ovsjanikov. 2021. Dpfm: Deep partial functional
maps. In 2021 International Conference on 3D Vision (3DV). IEEE, 175–185.

Stephen W Bailey, Dalton Omens, Paul Dilorenzo, and James F O’Brien. 2020. Fast and
deep facial deformations. ACM Transactions on Graphics (TOG) 39, 4 (2020), 94–1.

Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. 2018. Fast and
Deep Deformation Approximations. ACM Transactions on Graphics 37, 4 (Aug. 2018),
119:1–12. doi:10.1145/3197517.3201300 Presented at SIGGRAPH 2018, Los Angeles.

Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and
Michael J. Black. 2016. Keep it SMPL: Automatic Estimation of 3D Human Pose
and Shape from a Single Image. In Computer Vision – ECCV 2016 (Lecture Notes in
Computer Science). Springer International Publishing.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014a. FAUST:
Dataset and evaluation for 3D mesh registration. In CVPR.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014b. FAUST:
Dataset and evaluation for 3D mesh registration. CVPR (2014).

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016.
Learning shape correspondence with anisotropic convolutional neural networks.
Advances in neural information processing systems 29 (2016).

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
2017. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing
Magazine 34, 4 (2017), 18–42.

Pim De Haan, Maurice Weiler, Taco Cohen, and Max Welling. 2020. Gauge equivari-
ant mesh cnns: Anisotropic convolutions on geometric graphs. arXiv preprint
arXiv:2003.05425 (2020).

Nicolas Donati, Abhishek Sharma, and Maks Ovsjanikov. 2020. Deep geometric func-
tional maps: Robust feature learning for shape correspondence. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8592–8601.

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M.
Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph.
(2020).

Danielle Ezuz, Justin Solomon, Vladimir G. Kim, and Mirela Ben-Chen. 2017. GWCNN:
A Metric Alignment Layer for Deep Shape Analysis. Computer Graphics Forum
36, 5 (2017), 49–57. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13244
doi:10.1111/cgf.13244

Raanan Fattal, Dani Lischinski, and Michael Werman. 2002. Gradient domain high
dynamic range compression. ACM Trans. Graph. 21, 3 (July 2002), 249–256. doi:10.
1145/566654.566573

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. 2018. Splinecnn:
Fast geometric deep learning with continuous b-spline kernels. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 869–877.

Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer
Graphics Forum (2019).

Alexander Gao, Maurice Chu, Mubbasir Kapadia, Ming C Lin, and Hsueh-Ti Derek Liu.
2024. An intrinsic vector heat network. arXiv preprint arXiv:2406.09648 (2024).

Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L Rosin, Weiwei Xu, and Shihong
Xia. 2018. Automatic Unpaired Shape Deformation Transfer. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH Asia 2018) 37, 6 (2018), To appear.

Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang.
2019. SDM-NET: Deep generative network for structured deformable mesh. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–15.

William Gao, Noam Aigerman, Thibault Groueix, Vladimir G. Kim, and Rana Hanocka.
2023. TextDeformer: Geometry Manipulation using Text Guidance. SIGGRAPH
(Conference track) (2023).

Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. Shape retrieval contest
2007: Watertight models track. SHREC competition 8, 7 (2007), 7.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun.
2020. Deep learning for 3d point clouds: A survey. IEEE transactions on pattern
analysis and machine intelligence 43, 12 (2020), 4338–4364.

Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron Lipman. 2019.
Surface networks via general covers. (2019), 632–641.

Oshri Halimi, Or Litany, Emanuele Rodola, AlexMBronstein, and RonKimmel. 2019. Un-
supervised learning of dense shape correspondence. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4370–4379.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: a network with an edge. ACM Trans. Graph. 38, 4,
Article 90 (July 2019), 12 pages. doi:10.1145/3306346.3322959

Wenchong He, Zhe Jiang, Chengming Zhang, and Arpan Man Sainju. 2020. CurvaNet:
Geometric deep learning based on directional curvature for 3D shape analysis.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2214–2224.

Daniel Holden, Jun Saito, and Taku Komura. 2015. Learning an Inverse Rig Mapping
for Character Animation. In Proceedings of the 14th ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (Los Angeles, California) (SCA ’15). Association
for Computing Machinery, New York, NY, USA, 165–173. doi:10.1145/2786784.
2786788

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (July 2020),
18 pages. doi:10.1145/3386569.3392385

Inde�nGaming. 2025. Animated Paper Crumpling. https://www.turbosquid.com/3d-
models/animated-paper-crumpling-1794996.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78.

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: Real-time
Shape Deformation. In ACM SIGGRAPH 2014 Courses.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed
triangular meshes. ACM Siggraph 2005 Papers (2005), 561–566.

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2008. Geometric skinning
with approximate dual quaternion blending. ACM Transactions on Graphics (TOG)
27, 4 (2008), 1–23.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface re-
construction. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing (Cagliari, Sardinia, Italy) (SGP ’06). Eurographics Association, Goslar,
DEU, 61–70.

Hyunwoo Kim, Itai Lang, Thibault Groueix, Noam Aigerman, Vladimir G. Kim, and
Rana Hanocka. 2025. MeshUp: Multi-Target Mesh Deformation via Blended Score
Distillation. 3DV (2025).

Shahar Z. Kovalsky, NoamAigerman, Ronen Basri, and Yaron Lipman. 2014. Controlling
singular values with semide�nite programming. ACM Trans. Graph. (2014).

Alon Lahav and Ayellet Tal. 2020. Meshwalker: Deep mesh understanding by random
walks. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–13.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares
conformal maps for automatic texture atlas generation. Vol. 21. 362–371.

Minchen Li, Danny Kaufman, Vladimir G. Kim, Justin Solomon, and Alla She�er. 2018.
OptCuts: Joint Optimization of Surface Cuts and Parameterization. SIGGRAPH Asia
(2018).

Peizhuo Li, K�r Aberman, Rana Hanocka, Libin Liu, Olga Sorkine-Hornung, and Bao-
quan Chen. 2021. Learning Skeletal Articulations with Neural Blend Shapes. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1.

Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué,
H. V. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D.
Smeets, P. Suetens, H. Tabia, and D. Vandermeulen. 2011. SHREC’11 track: shape
retrieval on non-rigid 3D watertight meshes. In Proceedings of the 4th Eurograph-
ics Conference on 3D Object Retrieval (Llandudno, UK) (3DOR ’11). Eurographics
Association, Goslar, DEU, 79–88.

Yaron Lipman. 2012. Bounded distortion mapping spaces for triangular meshes. ACM
Trans. Graph. (2012).

Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM
Transactions on Graphics (TOG) 27, 3 (2008), 1–10.

Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi, and H.P. Seidel. 2004. Di�erential
coordinates for interactive mesh editing. In Proceedings Shape Modeling Applications,
2004. 181–190.

Or Litany, Tal Remez, Emanuele Rodola, Alex Bronstein, and Michael Bronstein. 2017.
Deep Functional Maps: Structured Prediction for Dense Shape Correspondence. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Isabella Liu, Zhan Xu, Wang Yifan, Hao Tan, Zexiang Xu, Xiaolong Wang, Hao Su, and
Zifan Shi. 2025. RigAnything: Template-Free Autoregressive Rigging for Diverse
3D Assets. arXiv preprint arXiv:2502.09615 (2025).

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-
cal/Global Approach to Mesh Parameterization. In Computer Graphics Forum. 1495–
1504.

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. 2021. DeepMetaHandles:
Learning Deformation Meta-Handles of 3DMeshes with Biharmonic Coordinates. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12–21.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G. Kim, and Yaron Lipman. 2017. Convolutional neural networks on
surfaces via seamless toric covers. ACM Trans. Graph. 36, 4, Article 71 (July 2017),
10 pages. doi:10.1145/3072959.3073616

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.

https://doi.org/10.1145/3197517.3201300
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13244
https://doi.org/10.1111/cgf.13244
https://doi.org/10.1145/566654.566573
https://doi.org/10.1145/566654.566573
https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1145/2786784.2786788
https://doi.org/10.1145/2786784.2786788
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1145/3072959.3073616


PoissonNet: A Local-Global Approach for Learning on Surfaces • 1:13

of the IEEE international conference on computer vision workshops. 37–45.
MeshyAI. 2025. . https://www.meshy.ai/.
Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and

Luca Carlone. 2020. Primal-Dual Mesh Convolutional Neural Networks. 33
(2020), 952–963. https://proceedings.neurips.cc/paper_�les/paper/2020/�le/
0a656cc19f3f5b41530182a9e03982a4-Paper.pdf

Thomas W. Mitchel, Vladimir G. Kim, and Michael Kazhdan. 2021. Field Convolutions
for Surface CNNs. (October 2021), 10001–10011.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds using
mixture model cnns. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 5115–5124.

SanjeevMuralikrishnan, Niladri Dutt, Siddhartha Chaudhuri, NoamAigerman, Vladimir
Kim, Matthew Fisher, and Niloy J Mitra. 2024. Temporal Residual Jacobians for
Rig-Free Motion Transfer. (2024), 93–109.

Ashish Myles and Denis Zorin. 2013. Controlled-distortion constrained global
parametrization. ACM Trans. Graph. 32, 4 (2013).

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in Inverse Ren-
dering of Geometry. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)
40, 6 (Dec. 2021). doi:10.1145/3478513.3480501

Ahmed A A Osman, Timo Bolkart, and Michael J. Black. 2020. STAR: A Sparse Trained
Articulated Human Body Regressor. In European Conference on Computer Vision
(ECCV). 598–613. https://star.is.tue.mpg.de

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas
Guibas. 2012. Functional maps: a �exible representation of maps between shapes.
ACM Transactions on Graphics (ToG) 31, 4 (2012), 1–11.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A.
Osman, Dimitrios Tzionas, and Michael J. Black. 2019. Expressive Body Capture: 3D
Hands, Face, and Body from a Single Image. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). 10975–10985.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2023. Poisson image editing. In
Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 577–582.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and
their conjugates. Experimental mathematics 2, 1 (1993), 15–36.

Adrien Poulenard and Maks Ovsjanikov. 2018. Multi-directional geodesic neural net-
works via equivariant convolution. ACM Trans. Graph. 37, 6, Article 236 (Dec. 2018),
14 pages. doi:10.1145/3272127.3275102

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3d classi�cation and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 652–660.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances in neural
information processing systems 30 (2017).

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed
Elhoseiny, and Bernard Ghanem. 2022. PointNeXt: Revisiting PointNet++ with Im-
proved Training and Scaling Strategies. In Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.),
Vol. 35. Curran Associates, Inc., 23192–23204. https://proceedings.neurips.cc/paper_
�les/paper/2022/�le/9318763d049edf9a1f2779b2a59911d3-Paper-Conference.pdf

Dafei Qin, Jun Saito, Noam Aigerman, Groueix Thibault, and Taku Komura. 2023.
Neural Face Rigging for Animating and Retargeting Facial Meshes in the Wild. In
SIGGRAPH 2023 Conference Papers.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 4 (2017).

Cristian Romero, Dan Casas, Jesus Perez, and Miguel A. Otaduy. 2021. Learning Contact
Corrections for Handle-Based Subspace Dynamics. ACM Trans. on Graphics (Proc.
of ACM SIGGRAPH) 40, 4 (2021). http://gmrv.es/Publications/2021/RCPO21

Jean-Michel Roufosse, Abhishek Sharma, and Maks Ovsjanikov. 2019. Unsupervised
deep learning for structured shape matching. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 1617–1627.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally Injective Mappings. Computer Graphics Forum (2013).

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. 2022. Di�usion-
net: Discretization agnostic learning on surfaces. ACM Transactions on Graphics
(TOG) 41, 3 (2022), 1–16.

Siyuan Shen, Yin Yang, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, and Kun
Zhou. 2021. High-order di�erentiable autoencoder for nonlinear model reduction.
ACM Transactions on Graphics.

Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned �lters in
convolutional neural networks on graphs. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3693–3702.

Dmitriy Smirnov and Justin Solomon. 2021. HodgeNet: learning spectral geometry
on triangle meshes. ACM Trans. Graph. 40, 4, Article 166 (July 2021), 11 pages.
doi:10.1145/3450626.3459797

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Trans. Graph. 34, 4 (2015).

Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Pro-
ceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing.

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian
surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing (Nice, France) (SGP ’04). 175–184.

Oded Stein, Eitan Grinspun,MaxWardetzky, and Alec Jacobson. 2018. Natural Boundary
Conditions for Smoothing in Geometry Processing. ACM Trans. Graph. 37, 2, Article
23 (May 2018), 13 pages. doi:10.1145/3186564

Robert W Sumner and Jovan Popović. 2004. Deformation transfer for triangle meshes.
ACM Transactions on graphics (TOG) 23, 3 (2004), 399–405.

Bo Sun, Thibault Groueix, Chen Song, Qixing Huang, and Noam Aigerman. 2024.
TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
21378–21389.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably infor-
mative multi-scale signature based on heat di�usion. In Computer graphics forum,
Vol. 28. Wiley Online Library, 1383–1392.

Zhiyu Sun, Ethan Rooke, Jerome Charton, Yusen He, Jia Lu, and Stephen Baek. 2020.
Zernet: Convolutional neural networks on arbitrary surfaces via zernike local tan-
gent space estimation. In Computer Graphics Forum, Vol. 39. Wiley Online Library,
204–216.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Variational Autoencoders
for Deforming 3D Mesh Models. In CVPR.

Shashank Tripathi, Lea Müller, Chun-Hao P. Huang, Taheri Omid, Michael J. Black,
and Dimitrios Tzionas. 2023. 3D Human Pose Estimation via Intuitive Physics. In
Conference on Computer Vision and Pattern Recognition (CVPR). 4713–4725. https:
//ipman.is.tue.mpg.de

Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan
Laptev, and Cordelia Schmid. 2017. Learning from Synthetic Humans. In CVPR.

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popovic. 2008. Articulated
Mesh Animation from Multi-View Silhouettes. ACM Trans. Graph. 27, 3 (2008), 97.

Yifan Wang, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, and Olga
Sorkine-Hornung. 2020. Neural Cages for Detail-Preserving 3D Deformations. In
CVPR.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. 2019. Dynamic graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog) 38, 5 (2019), 1–12.

O�r Weber and Denis Zorin. 2014. Locally injective parametrization with arbitrary
�xed boundaries. ACM Trans. Graph. (2014).

RubenWiersma, Elmar Eisemann, and Klaus Hildebrandt. 2020. CNNs on surfaces using
rotation-equivariant features. ACM Transactions on Graphics (ToG) 39, 4 (2020).

Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt. 2022. Delta-
conv: anisotropic operators for geometric deep learning on point clouds. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 1–10.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli
Ouyang, Tong He, and Hengshuang Zhao. 2024. Point Transformer V3: Simpler
Faster Stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 4840–4851.

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. 2022. Point
Transformer V2: Grouped Vector Attention and Partition-based Pooling. In
Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 33330–33342. https://proceedings.neurips.cc/paper_�les/paper/2022/�le/
d78ece6613953f46501b958b7bb4582f-Paper-Conference.pdf

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020.
RigNet: Neural Rigging for Articulated Characters. ACM Trans. on Graphics 39
(2020).

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. 2019. Predicting Anima-
tion Skeletons for 3D Articulated Models via Volumetric Nets. In 2019 International
Conference on 3D Vision (3DV).

Zhangsihao Yang, Or Litany, Tolga Birdal, Srinath Sridhar, and Leonidas Guibas. 2021.
Continuous Geodesic Convolutions for Learning on 3D Shapes. 134–144. doi:10.
1109/WACV48630.2021.00018

Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. 2017. SyncSpecCNN: Synchronized
Spectral CNN for 3D Shape Segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and Sanja Fidler. 2021.
3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations. In
Proceedings of International Conference on Computer Vision (ICCV).

Seungwoo Yoo, Kunho Kim, Vladimir G. Kim, and Minhyuk Sung. 2024. As-Plausible-
As-Possible: Plausibility-Aware Mesh Deformation Using 2D Di�usion Priors. CVPR
(2024).

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. 2022.
Point-bert: Pre-training 3d point cloud transformers with masked point modeling.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
19313–19322.

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.

https://proceedings.neurips.cc/paper_files/paper/2020/file/0a656cc19f3f5b41530182a9e03982a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0a656cc19f3f5b41530182a9e03982a4-Paper.pdf
https://doi.org/10.1145/3478513.3480501
https://star.is.tue.mpg.de
https://doi.org/10.1145/3272127.3275102
https://proceedings.neurips.cc/paper_files/paper/2022/file/9318763d049edf9a1f2779b2a59911d3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9318763d049edf9a1f2779b2a59911d3-Paper-Conference.pdf
http://gmrv.es/Publications/2021/RCPO21
https://doi.org/10.1145/3450626.3459797
https://doi.org/10.1145/3186564
https://ipman.is.tue.mpg.de
https://ipman.is.tue.mpg.de
https://proceedings.neurips.cc/paper_files/paper/2022/file/d78ece6613953f46501b958b7bb4582f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d78ece6613953f46501b958b7bb4582f-Paper-Conference.pdf
https://doi.org/10.1109/WACV48630.2021.00018
https://doi.org/10.1109/WACV48630.2021.00018


1:14 • Maesumi, A. et al

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. 2004. Mesh editing with poisson-based gradient �eld manipulation. In
ACM SIGGRAPH 2004 Papers. 644–651.

Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu. 2022.
PVT: Point-voxel transformer for point cloud learning. Interna-
tional Journal of Intelligent Systems 37, 12 (2022), 11985–12008.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.23073 doi:10.1002/
int.23073

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. 2021. Point
Transformer. (October 2021), 16259–16268.

Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbic. 2021. A Deep Emulator for
Secondary Motion of 3D Characters. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5932–5940.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Silvia Zu�, Angjoo Kanazawa, David Jacobs, and Michael J. Black. 2017. 3D Menagerie:
Modeling the 3D Shape and Pose of Animals. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.23073
https://doi.org/10.1002/int.23073
https://doi.org/10.1002/int.23073


PoissonNet: A Local-Global Approach for Learning on Surfaces • 1:15

A Experimental and Implementation Details

Below we provide details for all experiments outlined in the main
text, including the employed PoissonNet architectures, details of
compared methods, and training hyperparameters.

A.1 Analysis of Full-Spectrum Learning

We train a 128-width PoissonNet with two blocks using an addi-
tional NJF head. Each block uses a VectorMLP of two layers. We
train our network on all frames of the crumpling paper ball dataset
(see Sec. C.2) using a learning rate of 0.001 and virtual batch size of 8.
The employed Di�usionNet baseline uses similar parameters; how-
ever, for fair comparison we endow Di�usionNet with wider blocks,
using a width of 192 to equalize the total number of parameters,
and an NJF head is provided. As with our shape deformation exper-
iment, we validated the baseline with and without an NJF head—in
this particular experiment, we found the results to be moderately
better with the head included. The paper crumpling sequence is
parametrized by a single scalar time value, which is appended to
the scalar MLPs of both networks.

Analysis of network features. In Section 6.1 we compare the power
spectra of PoissonNet’s learned features compared to that of Dif-
fusionNet. In particular, we extract feature maps from the last net-
work block (before the appended NJF heads) for both networks,
and project these features into an eigenbasis given by the crumpled
paper’s Laplace-Beltrami operator. The eigenbasis has size = 1024.
Let f ∈ R ×� denote the projection of a feature mapwith� channels
into the spectral basis. We compute the power spectra per-channel
2 , ?2

:
, over all f: with : ∈ [1,  ] via, ?2

:
= |f2

:
|2, normalizing the

power channel-wise, ?̂2
:
= ?2/

∑ 
9 ?

2
9 . Finally, we compute the maxi-

mum channel-wise power, taking that as our �nal power spectrum.
The �rst inset in Section 6.1 shows power spectra for feature maps
produced by the networks’ PDEs and MLP layers respectively. Our
method produces features with more power in the high-frequency
range, notably our MLP’s features retain higher frequencies in the
band that is truncated by Di�usionNet’s spectral PDE solve.

Table 4. Comparison of methods on the human mesh segmentation task of

Maron et al. [2017]. Table is provided by Wiersma et al. [2022].

Method Accuracy

PointNet++ [Qi et al. 2017b] 90.8
MDGCNN [Poulenard and Ovsjanikov 2018] 88.6
DGCNN [Wang et al. 2019] 89.7
SNGC [Haim et al. 2019] 91.0
HSN [Wiersma et al. 2020] 91.1
MeshWalker [Lahav and Tal 2020] 92.7

CGConv [Yang et al. 2021] 89.9
FC [Mitchel et al. 2021] 92.5
Di�usionNet - xyz [Sharp et al. 2022] 90.6
Di�usionNet - hks [Sharp et al. 2022] 91.7
DeltaConv [Wiersma et al. 2022] 92.2

PoissonNet - xyz 90.7
PoissonNet - hks 91.1

A.2 Shape Deformation

In our shape deformation experiments we use a 128-width Poisson-
Net with �ve blocks, using VectorMLPs with three layers. We train
using a learning rate of 0.0005 and batch size of 16. The employed
Di�usionNet baseline uses equal number of blocks with a larger
width of 192 to equalize parameter count. We experimented with
various con�gurations for DeltaConv, which we discuss in a later
paragraph. Finally, all networks are endowed with an additional
NJF head to parametrize the deformation—we experiment with
alternative choices, discussed in paragraph NJF Head below.

Experimental setup. We employ our full dataset of 16k source-
target SMPL-X human body pairs with poses sourced from the
MOYO dataset [Pavlakos et al. 2019; Tripathi et al. 2023]—see Section
C.1 for details. Each network is conditioned on all 153 SMPL-X pose
parameters—parameters for eyes are excluded. We experimented
with two choices for injection of these parameters into the tested
backbones: 1) by simply included these parameters in the input layer
of the networks, 2) by concatentation of the parameters in each net-
work block’s MLP. We found that the second option is superior for
all backbones. We employ standard data augmentation techniques
to further improve generalization; in particular, we apply random
shifts and scalings to the training shapes. In the case of Di�usionNet,
which uses precomputed eigenbases, we are mindful to update them
accordingly when scaling training shapes dynamically.

NJF Head. We experiment with two parametrizations of the defor-
mationmap: 1) a direct prediction of the target vertices (i.e. networks
predict the deformed xyz coordinates directly), and 2) appending
an NJF head to the end of each network. We �nd that using an
NJF head is superior across all backbones, especially for generaliza-
tion to out-of-distribution geometries. We implement identical NJF
heads for each method. Concretely, the head expects input features
on vertices, which are then mapped to corresponding gradient fea-
tures on faces using the intrinsic gradient operator. We transform
these features using a Vector MLP that maps the input gradient fea-
tures into a 2-vector �eld for each of the target coordinate channels
(i.e. x,y,z)—these serve as the predicted mapping’s Jacobian �elds,
which are then integrated using Poisson’s equation to produce the
�nal deformed vertices. We additionally add the source shape’s
xyz gradients to the NJF head’s predicted Jacobians, serving as a
skip connection in the gradient domain. We re-iterate that identical
constructions were tested across backbones in these experiments.

DeltaConv Baseline. We employed various con�gurations for the
DeltaConv backbone used in Section 6.2, ranging from networks
that matched our parameter count of ∼1.5 million, to deeper net-
works totaling ∼2.5 million parameters. We additionally, disabled
the BatchNorm layers in DeltaConv’s MLPs, as they hindered de-
formation performance. However, we found that all con�gurations
were unable to converge to a comparable result as compared to our
method and Di�usionNet. We attribute this to two properties in-
herent in DeltaConv’s construction: 1) the use of point-based K-NN
surface operators, which are extremely noisy for surfaces that have
near-touching geometry. This is especially relevant in our case, as
our dataset contains yoga poses, where ground truth geometry is
often “kissing”, or even intersecting; 2) DeltaConv’s network blocks
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Fig. 12. We further demonstrate that PoissonNet can be used to repose characters that are produced by generative models. Here, we show a diverse selection

of characters generated by MeshyAI [2025] that have been reposed using PoissonNet with pose inputs from the MOYO dataset [Tripathi et al. 2023].

Fig. 13. PoissonNet’s segmentations on the dataset of Maron et al. [2017].

use local mesh operators, whereas our method features fully global
support in each network block. For this reason, we experimented
with DeltaConv backbones that were comparatively deeper (i.e. to
enlarge its e�ective receptive �eld). However, we note that doing so
only marginally improved performance, and in some cases actually
hindered performance due to over-parametrization.We note that the
employed DeltaConv architecture did not use spatial downsampling
or upsampling layers (as in a UNet-style network), as this architec-
ture variant was not available in the open source code. Using spatial
pooling may improve performance, as it would e�ectively broaden
the network’s receptive �eld; However, critical limitations would
remain (i.e. sensitivity to sampling density).

A.3 Semantic Segmentation on MOYO Dataset

We train a 128-width PoissonNet with three blocks, using Vec-
torMLPs with a single layer. We train using a learning rate of 0.001
and batch size of 16. The Di�usionNet baseline uses blocks of 176
width to equalize parameter count, and the DeltaConv baseline was
con�gured similarly. The inset loss plot in Section 6.3 shows that
our method converges to a higher test accuracy, while being far
more compute e�cient than the compared methods. Namely, Di�u-
sionNet required an additional 16 hours of precompute and 160gb of
memory overhead to compute and store the dense eigenbases over
the entire segmentation dataset. Meanwhile, DeltaConv required 3
times as many training iterations to converge to a lower �nal test
accuracy. The total wallclock time of our method was only 2 hours.

B Ablating design decisions

In Figure 10 we show validation loss curves for various hyperpa-
rameter con�gurations on our shape deformation experiment. We
speci�cally highlight that our vector feature modulation step (given

by Eq. 4) clearly improves performance on this benchmark. This
gain in performance is representative across all of our experiments.

C Creation of Datasets

C.1 MOYO Dataset

We employ the MOYO dataset [Tripathi et al. 2023] in our shape
deformation and semantic segmentation experiments (see Sections
6.3 and 6.2). In particular, we generate a dataset of 32k training and
4k validation SMPL-X [Pavlakos et al. 2019] human bodies using
yoga poses sampled from MOYO. Because MOYO contains tempo-
ral motion captures, there are many near-identical frames that are
redundant for our experiments; hence, we employ a greedy farthest
point sampling routine to select a subset of the poses that are most
distinct. We then generate human bodies by randomly sampling
SMPL-X body shapes—we aggressively sample body parameters
using a Gaussian distribution with a standard deviation of 5. This
provides body models with more diverse geometry, which aids in
generalization. The dataset is generated with pairs of source-target
models with identical body shapes. For our semantic segmenta-
tion experiment, we use the canonical SMPL-X vertex segmentation
map. In particular, we use all 27 classes—we exclude the eyes/eyeball
classes. We use all 32 thousands training examples in both experi-
ments; for shape deformation this constitutes 16 thousand source-
target pairs.

C.2 Crumpling Paper Ball

We use the simulated crumpling paper ball published by Inde�nGam-
ing [2025] to benchmark our network. The sequence is comprised
of 118 frames, each with a canonical mesh topology of 300k faces.

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 PoissonNet
	4.1 Local step in the gradient domain
	4.2 Globally propagating gradient features

	5 Implementation
	6 Results and Experimentation
	6.1 Analysis of Full-Spectrum Learning
	6.2 Shape Deformation
	6.3 Semantic Segmentation
	6.4 Classification
	6.5 Analysis of Architectural Properties

	7 Conclusion
	Acknowledgments
	References
	A Experimental and Implementation Details
	A.1 Analysis of Full-Spectrum Learning
	A.2 Shape Deformation
	A.3 Semantic Segmentation on MOYO Dataset

	B Ablating design decisions
	C Creation of Datasets
	C.1 MOYO Dataset
	C.2 Crumpling Paper Ball


