
One Noise to Rule Them All

Noise function Sampled parameters Range
cells 4 scale 8 [5, 50]
cells 1 scale 8 [10, 50]
voronoi scale 5 [5.0, 15.0]

distortion intensity 5 [0.0, 1.0]
distortion scale multiplier 5 [1.0, 2.0]

microscope view scale 8 [25, 64]
warp intensity 5 [0.0, 1.0]

bnw spots 1 scale 8 [1, 3]
liquid scale 8 [10, 45]

warp intensity 5 [0.1, 0.8]
grunge galvanic small crispness 5 [0.0, 0.75]

dirt 5 [0.0, 1.0]
micro distortion 5 [0.0, 0.6]

grunge leaky paint leak intensity 5 [0.0, 1.0]
leak scale 8 [1, 8]

leak crispness 5 [0.0, 0.8]

Noise function Sampled parameters Range
grunge rust �ne base grunge contrast 5 [�0.3, 0.3]

base warp intensity 5 [0.0, 256.0]
grunge damas distortion 5 [0.0, 1.0]

divisions 8 [4, 16]
waves 8 [1, 3]
details 5 [0.0, 0.75]

rotation random 5 [0.05, 1.0]
grunge map 002 N/A N/A
grunge map 005 N/A N/A
messy �bers 3 scale 8 [1, 3]

perlin scale 8 [10, 50]
gaussian scale 8 [10, 50]
clouds 1 scale 8 [1, 5]
clouds 2 scale 8 [1, 5]
clouds 3 scale 8 [1, 3]

Table 1. We enumerate the noise functions that are sampled from Adobe Substance 3D Designer, along with their parameters and accompanying ranges –
integer and real ranges are denoted by 8 and 5 respectively.

FID# FID#
Noise PSGAN Ours Noise PSGAN Ours
cells 4 218.8 33.6 rust �ne 88.5 12.3
cells 1 171.3 2.4 damas 56.1 71.0
voronoi 149.3 12.5 map 002 37.3 13.7

microscope 133.1 29.7 map 005 155.4 34.5
bnw spots 1 22.4 4.4 �bers 86.4 34.6

liquid 163.7 38.0 perlin 47.8 4.8
galvanic small 79.2 24.9 gaussian 45.2 1.7
leaky paint 155.1 44.3 clouds 1 20.4 1.5
clouds 3 38.4 2.9 clouds 2 110.8 9.0
Mean 99.2 20.9 Median 87.5 13.1

Table 2. We compare our FID scores for each noise type alongside PSGAN.
The mean and median of all values are shown as well.

A EXPERIMENTAL AND IMPLEMENTATION DETAILS
A.1 Noise dataset details
We include a table enumerating all sampled noise types, the param-
eters that we sample, as well as the parameter ranges (see Table 1).
In general, we choose to include any parameters that lead to notice-
able changes in the resulting noise, with exceptions to parameters
that simply act as color correction (i.e. grunge map 005’s contrast
parameter). We note that, despite their names, some of these noises
correspond to those that belong to graphics literature; for instance,
cells 4, cells 1, and voronoi are variants of Worley noise [Wor-
ley 1996]. For more details about these noises, please refer to the
Adobe Substance documentation [2023b].

The conditioning vector f? contains an entry for each unique
noise parameter – we treat identical parameter names as separate,
with the exception of scale, which is treated as a single entry in the
vector. Parameters are independently normalized to the range [0, 1]
before being passed to our conditioning MLP. Below we show many

w
/o

 o
!s

et
 n

oi
se

w
/ o

!s
et

 n
oi

se
grunge damas grunge map 002 microscope view

Fig. 16. Ablation of o�set noise. Without o�set noise, the network occasion-
ally fails to synthesize noise images with extreme intensity distributions (i.e.
intensely dark and bright images). We show representative examples above.

samples of our model’s outputs with all listed noise parameters
being sampled randomly (see Figs. 19 to 23).

A.2 PSGAN Baseline
We slightly modify the PSGAN [2017] architecture for the results
shown in Figure 6. Since PSGAN is a purely unconditional gen-
erative model (i.e. it has no class or parameter conditioning be-
yond randomized latent code inputs), we endow the PSGAN model
with SPADE conditioning blocks that are identical to the ones used
throughout our method. We made the discriminator slightly larger
to compensate for the added parameters in the generator. Finally,
we use the WGAN loss [Arjovsky et al. 2017]. The remaining parts
of the network and training are largely kept as-is from the open
implementation. In total the generator has 30 million parameters.

13

Maesumi et al.

A.3 Inverse Material Design Details
We expose three parameters to the MATch di�erentiable material
graph optimizer; a soft-class vector v2 , the parameter vector f? ,
and the di�usion Gaussian noise image z. The soft-class vector rep-
resents a list of [0, 1] values that are used to index into our class
embeddings – this amounts to taking a convex combination over
the class embeddings. During optimization, we apply the SoftMax
function to v2 to ensure the values are valid. In order to encourage
sparsity, we include an L1 regularization term on both v2 and f? ,
using a weight of 0.1 for both L1 terms in the �nal optimization ob-
jective. Additionally, we include a scheduled temperature parameter
g into the SoftMax operator by performing element-wise division of
v2 by g , softmax(E, C) = 4E8 /CÕ

9=1 4
E9 /C . The temperature is initialized to

0.25 and is updated at every optimization step via the update rule
g 0 g · 0.97. Finally we clamp g to be at minimum 0.01. This sched-
uled temperature forces the optimization to “hone in” on a single
class. We use a learning rate of 0.01 for all graphs. After g = 0.01
we perform a warm-restart of the optimizer and add noise to the
exposed parameters to avoid local minima.

B TRAINING WITH ADDITIONAL NOISE TYPES
We train our model on two additional noise types that are com-
monly used in graphics literature: Phasor noise [2019] and Gabor
noise [2009]. We utilize the same data sampling method as men-
tioned in Section 4. The parameters that we sampled for both noise
types, as well as their ranges, are enumerated in Table 3. We use
the released implementations for both noise types to accrue our
training data. Examples of spatially-varying images using parame-
ter interpolation and class interpolation for both Phasor and Gabor
noise are shown in Figs. 17 and 18.

We note that our model exhibits an FID of 93.6 and 129.3 on Pha-
sor and Gabor noise respectively, which is notably higher than the
FID scores for other noise types. Upon inspection of our model’s
outputs, we see that some parameter con�gurations are not well
captured by our training. For example, Gabor noise exhibits a sig-
ni�cantly di�erent visual appearance when its principal frequency
and kernel width are very small; however, since this appearance
is only captured by a narrow subset of the parameter space, the
dataset thus contains much fewer of such samples. One drawback
of di�usion models is that they model low-density regions of the
data distribution less accurately (compared to higher-density re-
gions) [Song 2021; Um et al. 2024], and hence our performance is
worse in such situations. More careful data sampling methods may
be needed when the desired noise distribution exhibits low-density
modes; e.g. by sampling some regions of the parameter space more
frequently.

C MODEL ARCHITECTURES
The U-Net model detailed in Section 4 has just ⇠5.1 million parame-
ters and is constructed using two downsampling blocks, a bottleneck
block, and two upsampling blocks. Each block contains two ResNet
sub-blocks. An additional ResNet sub-block is placed at the end of
the network. We use channel dimensions of 32 and 64 for the outer

Noise function Sampled parameters Range
phasor noise principal frequency, � 5 [8.0, 32.0]

num cells 8 [1, 12]
phasor density 5 [0.3, 0.5]

factor angle spread, \ 5 [0.0, 1.0]
gabor noise principal frequency, � 5 [0.02, 0.08]

kernel width, U 5 [0.01, 0.35]
kernel orientation, l 5 [0.0, 2c]

Table 3. Parameters and sampling ranges for additional noise types.

Fig. 17. Examples of our model’s Phasor noise. From top to bo�om: isotropic
Phasor to anisotropic Phasor (parameter interpolation), anisotropic Phasor
to Messy Fibers, and anisotropic Gabor to anisotropic Phasor (class interpo-
lation).

Fig. 18. Examples of our model’s Gabor noise. From top to bo�om: Gabor
to Gabor (parameter interpolation), Gabor to Microscope View, and Gabor
to Grunge Rust Fine (class interpolation).

14

One Noise to Rule Them All

Architecture Block dimensions Attention Num. Parameters Mean FID# Median FID# Steps per second"
Model-XS (32, 64, 128) 7 5.1M 20.9 13.1 79.5/s
Model-S (32, 64, 64, 128) heads = 4, dim = 32 6.5M 14.0 10.8 28.6/s
Model-M (64, 128, 128, 256) heads = 4, dim = 32 22.5M 10.3 10.4 20.1/s

Table 4. Three model architectures with varying parameter counts and design choices are shown. The Block dimensions column shows the dimension counts
for the downsampling blocks followed by the bo�leneck block (the networks are symmetric; i.e. the upsampling blocks follow the same dimensions in reverse
order). Our primary model (first row) is significantly faster than the other models, but compromises slightly on FID.

blocks, and 128 for the bottleneck. The ResNet sub-blocks are glob-
ally conditioned on the di�usion time C , and spatially conditioned
(via SPADE) by 128-dim noise embeddings. We will refer to this
model as Model-XS (extra small) below.
We train two additional model architectures to evaluate the po-

tential performance of larger and more complex models. Model-S is
identical to Model-XS, with the exception of added linear attention
layers inside of each block [Shen et al. 2021], and the addition of an
extra set of downsampling/upsampling blocks. Similarly, Model-M
is identical to Model-S, with the exception of larger channel dimen-
sions. In Table 4 we summarize these architectures as well as their

FID scores and inference performance. The models were trained
for the same number of optimization steps following the details in
Section 4.

For our inverse material design application, we found that using
Model-XS was most suitable due to the added memory cost of at-
tention layers. For consistency, we used this model for all �gures
in the main text; however, in applications that do not require such
light-weight networks, the larger models may be suitable.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

15

Maesumi et al.

Fig. 19. Random samples of our model’s cells 4, cells 1, and voronoi noises at 256 ⇥ 256 resolution.

16

One Noise to Rule Them All

Fig. 20. Random samples of our model’s microscope view, bnw spots1, and liquid noises at 256 ⇥ 256 resolution.

17

Maesumi et al.

Fig. 21. Random samples of our model’s grunge galvanic small, grunge leaky paint, and grunge rust fine noises at 256 ⇥ 256 resolution.

18

One Noise to Rule Them All

Fig. 22. Random samples of our model’s grunge damas, grunge map 002, and grunge map 005 noises at 256 ⇥ 256 resolution.

19

Maesumi et al.

Fig. 23. Random samples of our model’s messy fibers 3, perlin, and gaussian noises at 256 ⇥ 256 resolution.

20

One Noise to Rule Them All

Fig. 24. Random samples of our model’s clouds 1, clouds 2, and clouds 3 noises at 256 ⇥ 256 resolution.

21

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Spatially-varying conditioning
	3.2 Enhancing localized conditioning

	4 Implementation Details
	5 Results and evaluation
	6 Conclusion
	Acknowledgments
	References
	A Experimental and Implementation Details
	A.1 Noise dataset details
	A.2 PSGAN Baseline
	A.3 Inverse Material Design Details

	B Training with additional noise types
	C Model architectures

