Supplemental Material: Explorable Mesh Deformation Subspaces
from Unstructured 3D Generative Models

A EXPERIMENTAL AND IMPLEMENTATION
DETAILS

A.1 Latent code optimization

The given meshes in M are projected into G’s latent space by
minimizing the Chamfer distance of a random point sampling of
each mesh, P, to the output of the generator with respect to a
latent code zp,, making the objective argmin, CD(G(zm),P). This
optimization is done in a coarse-to-fine manner, where the sampling
progressively gets denser; starting from 2!! and growing to 21°
points, doubling every 800 iterations. We used a point sampling
schedule of 2048, 4069, 8192, 16384, 32768, resampling every 800
iterations. The coarse-to-fine procedure was critical for avoiding
local minima in the optimization. We visualize all projections of
our shapes in each exploration space in Figures 1, 2, and 3.

A.2 Embedding of meshes into &

The K nearest neighbor graph used to embed our landmarks into &
uses k = 5 and the similarity between landmarks is determined by
the dense correspondence distance given by SP-GAN’s resulting
point clouds. That is, the distance metric is the sum of Euclidean
distances between points in G(z1) and G(z2) for two landmarks
71, Z3.

We embed the input meshes M into the exploration space via a
two-stage optimization process. First we optimize the embedding
X = {x1, ..., XN } using the triplet loss formulation given in Section
4.4, after 600 optimization iterations, we compute a Delaunay tri-
angulation, 7, of X. With this triangulation, we begin to impose
> losses on the areas of triangles in 7~ as well as the minimum
interior angles of each triangle. In a sense, this process iteratively
makes the embedding “more Delaunay.” This process alone may
cause the embedding to shrink to a single point, hence, we impose
a constraint by “pinning” the convex hull of X before beginning
stage two—these points do not get updated during optimization.
In order to prevent the triangulation from becoming entangled
(i.e. overlapping edges), we use a much smaller learning rate in
the second stage of this process. We use Adam optimizer with a
learning rate of 0.1 for the first stage, and 0.005 for the second stage.
Finally, we execute an adjustment step that snaps points in X to
the nearest point on the convex hull, if they are within a distance
threshold from the hull. This prevents large sliver triangles from
forming along the hull.

Note that alternative methods for the first stage can act as a
drop-in replacement. That is, one could use, say, t-SNE or UMAP
for the first stage of this pipeline (the second stage is unaffected).

A.3 Discretization of &

We discretize the exploration space using the CAL-FEM Python
package. Each facet in the Delaunay triangulation is densely sub-
divided into uniform elements, and the number of elements is de-
termined by the area of the facet. The exploration spaces chairs-
100, tables-50, and airplanes-25 were discretized into approximately
18 -10%,13 - 10® and 15 - 10° facets each.

A.4 Computation of boundary conditions

Similar to the procedure suggested by [Laine 2018], we discretize
the geodesics paths into polylines, and the objective is then given
by
argmin, NG (2) - G(zir)|?

where zj__, are nodes along a polyline with n nodes. We employ a
coarse-to-fine optimization of our polylines in Z. The polylines are
initialized as straight lines with 8 nodes connecting the source and
target latent codes. The polyline is subdivided every 100 iterations,
doubling the number of nodes until the polyline has 64 nodes.

A.5 Computing switch points & remapping
boundary conditions

Our boundary conditions are given as polylines with 64 nodes
that connect latents z; to z;. In order to compute the point in
which we switch from mesh M; to mesh M, we first compute two
deformation sequences: one from M; to Mj, and the other M; to
M;. Given these two sequences of meshes, we can identify the time
t* where the chamfer distance between the meshes is minimal. We
find the optimal switch point in a subsection of the deformation
sequence centered around t = 0.5, i.e. we do not take a switch point
to be, say, ¢ = 0.01, rather we only consider t values in [0.35, 0.65].
This is to prevent overly distorting the boundary conditions.

Remapping the polyline is done by dilating both sides of the
polyline such that t* is mapped exactly to t = 0.5. Hence all of the
switch points’ boundaries can be visualized by a standard Voronoi
diagram.

A.6 The energy-minimizing map ®
Training. Our map ® from exploration space to Z is implemented

as a four layer multi-layer perceptron with sinusoidal positional
encoding [Mildenhall et al. 2020], where L = 5

y(x) = (sin(ZOn'x), cos(2°7x), ..., sin(ZLn'x), cos(2L7rx)) .

The MLP is optimized via stochastic gradient descent with a learn-
ing rate of 3 - 10™* as per the objective in Equation 2. We use batch
sizes of 256 with gradient accumulation. Our training times vary
from 12 to 24 hours for our smallest and largest exploration spaces.

Inference. Our formulation of the submanifold objective (Section
4.2) assumes that Z is piecewise linear, hence in order to do in-
ference on ® properly, we must query it in a similar fashion. At
inference time, a point in exploration space x € & is decoded into
primal space by first identifying which FEM facet x resides in. Then

we compute a barycentric interpolation of the functional values of
the facet’s vertices lifted into primal space. Additionally, if any of
these vertices lie on our boundary, we “swap” out the functional
value with the boundary value, which is the same procedure that
we use during training.

A.7 Deformation module

For a given path connecting source and target points in exploration
space, we accumulate the vertex displacements via the discrete
Euler method in Equation 4. For all rendered results in the paper,
we integrate over 180 samples along the given path. We employ a
custom GPU-accelerated smoothing radial basis function interpola-
tor that has a throughput of 72 steps per second, which facilitates
real-time interaction. The smoothing parameter is chosen for each
exploration space independently: 15, 50, 15 for the airplanes-25,
tables-50, chairs-100 spaces respectively. Preliminaries for RBF in-
terpolation are in Appendix B.

A.8 Obtaining shapes for exploration spaces

Our exploration spaces: chairs-100, tables-50, airplanes-25 were pop-
ulated using a semi-random shape retrieval routine. We start with
a set of N hand-picked shapes (N = 5 in our case), then iteratively
select shapes from the dataset based on similarity. In particular,
at each step in this process we sample a random shape from the
top-K nearest shapes in ShapeNet. We vary the K parameter across
experiments to accommodate for lack of diversity in certain shape
categories. In particular, we used K = 2000, K = 1500, and K = 5000
for chairs, tables, and airplanes respectively. A temperature param-
eter y was used to control a similarity-weighted softmax over the
retrieved K shapes. Finally, the distance metric used to measure
shape similarity is the dense-correspondence distance given by
SP-GAN, as mentioned in Section 6.

B RBF INTERPOLATION PRELIMINARIES

Given a set of data samples f(xo), ..., f(x,) and radial basis func-
tions centered those samples, ¢(xr) = ¢(||x — x¢||), RBF interpo-
lation represents an interpolant as a weighted combination of the
bases

Sx) = > wi - p(llx—xill),
i=0

st. S(xi) = f(x;) Vi

whose weights can be solved via the linear system Aw = b, where

$(llxo - xol) d(llxn —xolD] [wo] [F(x0)
A — $lxn =il | [wr | | FGen)
$(IIx0 - xul) $(lxn —xall] lwa] LFxn)

A common choice for the radial function is the thin plate spline,
which is given by ¢(r) = r? Inr, and is our choice of basis function.

The smoothing variant of RBF interpolation requires that we add
a polynomial term to the interpolant. That is, we add to S(x) a sum
of weighted monomials up to a specified degree, and require that
the interpolant evaluates to a be exactly polynomial if the data itself
comes from a polynomial (this additional condition is necessary to

specify a unique solution). The linear system eventually becomes

-

where P is a matrix of monomial terms and d is their coefficients.
Finally, the smoothing parameter A (which is mentioned in our
method), is incorporated by adding a constant term to the diagonal
of A. For further reading, please refer to [Anjyo et al. 2014].

Supplemental Material: Explorable Mesh Deformation Subspaces from Unstructured 3D Generative Models

Aty
6
Az
o
v Dy s
2o
4
_?.
Ay
iy

~
s gy v

A
S
1@
=
%
‘(
g« Mg« Wiy
=
i

Ty

L

2w

b
By = Ly -
e/

=

S

T

Ag;

2
=/

s g s
=
5

A
Ty
b
"?ﬂﬂ
=
o
e
e
iy
6

Figure 1: Point cloud visualizations of the chairs in chairs-100 after being projected into SP-GAN’s latent space.

10 1 12
F‘ s g ri?:

20 21 22 23
i, " %&;,h
< s

30 31 32 33

~ -

40 41 a2 a3

n \ i

B

7 8
T, f*‘3"&.;:-:
|
17 18
G
27 28
g
‘ﬂh.. ;"‘m"
i &
37 38
vt -il
a7 48

N?ﬁ

39

49

Figure 2: Point cloud visualizations of the tables in tables-t0 after being projected into SP-GAN’s latent space.

0 1
> ”~
5 6
.
& I 4
10 11
o
s I
15 16
b ’
& &
20 21
s "
- &

22

13

18

23

14

19

24

Figure 3: Point cloud visualizations of the airplanes in airplanes-25 after being projected into SP-GAN’s latent space.

	A Experimental and Implementation Details
	A.1 Latent code optimization
	A.2 Embedding of meshes into E
	A.3 Discretization of E
	A.4 Computation of boundary conditions
	A.5 Computing switch points & remapping boundary conditions
	A.6 The energy-minimizing map
	A.7 Deformation module
	A.8 Obtaining shapes for exploration spaces

	B RBF Interpolation Preliminaries

