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Triangle Inscribed-Triangle Picking
Arman Maesumi

Arman Maesumi (arman@cs.utexas.edu) is a junior at the
University of Texas at Austin. He is studying computer
science and also has interests in mathematics. In his spare
time he writes software, and creates digital renderings of
physics simulations. His plan is to pursue a PhD in
computer science after his undergraduate studies. Arman
became interested in the minimal enclosing circle problem,
and his attempt at studying random sets of points led to this
article.

A tale of three points
In 1865, James Joseph Sylvester proved [8] that the average area of a random triangle,
whose vertices are picked inside a given triangle of unit area, is equal to 1/12. This
problem, originally proposed by S. Watson, and known as Triangle Triangle Picking, is
one of the earliest examples of geometric probability [9]. Many similar problems have
been proposed [4, 13], including Sylvester’s own four-point problem [14], which asks
for the probability that four random points in a convex shape have a convex hull that
is a quadrilateral. Problems involving properties of inscribed geometric figures have
also been studied; for example, questions related to the average distance of inscribed
points appear in [2], while in [6] the average area and perimeter of a triangle inscribed
in a circle is found.

Here we consider a class of such problems where the interior polygon has its ver-
tices on the edges of the base convex polygon, with one vertex per side. In particular
we look at the properties of a random triangle that is inscribed in a fixed triangle. The
probability distribution function and the moments of the area of the inscribed triangle
are derived in this paper.

An application of barycentric coordinates
A simple and effective way of describing triangles within triangles is to use barycentric
coordinates. Suppose the vertices of a triangle are denoted by the vectors �A, �B, �C.
The barycentric coordinates [10] of a point �P , with respect to the triangle ABC, are
(α, β, γ ) if �P = α �A + β �B + γ �C, and α + β + γ = 1. Bottema’s theorem [3] gives
the area of a triangle if the barycentric coordinates of its vertices are specified with
respect to another triangle of known area.

Theorem 1 (Bottema). Let |�ABC| represent the area of triangle ABC. Assume the
vertices Pi of a triangle P1P2P3 have barycentric coordinates (xi, yi, zi), with respect
to the triangle ABC, then

|�P1P2P3| =
∣∣∣∣∣∣det

⎡
⎣ x1 y1 z1

x2 y2 z2

x3 y3 z3

⎤
⎦
∣∣∣∣∣∣ |�ABC|.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/ucmj.
doi.org/10.1080/07468342.2019.1669383
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By using the above theorem we can easily calculate the moments of the area of the
inscribed triangle.

Theorem 2. Given a unit triangle ABC, if three points R, S, and T are chosen uni-
formly and independently on the sides AB, BC, and CA respectively then the average
area of RST is 1/4.

Proof. Consider an inscribed triangle whose vertices R, S, T , are defined as⎧⎪⎨
⎪⎩

�R = �B + r
−→
BC

�S = �C + s
−→
CA

�T = �A + t
−→
AB

where r, s, t are uniformly and independently distributed random numbers in [0, 1].

Figure 1. Triangle ABC, and an inscribed triangle RST .

In this case, the points R, S, T are respectively given by barycentric coordinates
(0, r, 1 − r), (1 − s, 0, s) and (t, 1 − t, 0). Now we define Q(r, s, t) as the area of
RST . Therefore, by Bottema’s theorem

Q(r, s, t) = det

⎡
⎣ 0 r 1 − r

1 − s 0 s

t 1 − t 0

⎤
⎦ = rst + (1 − r)(1 − s)(1 − t). (1)

Now we will set out to calculate E[Q], the expected value of Q(r, s, t). Since r, s, t are
independent, the expected value of rst , and (1 − r)(1 − s)(1 − t) can be represented
by the product of the expected values of r, s, t . Specifically, the first moment of Q

evaluates to

E[Q(r, s, t)] = E[rst + (1 − r)(1 − s)(1 − t)]

=
∫ 1

0

∫ 1

0

∫ 1

0
(rst + (1 − r)(1 − s)(1 − t)) dr ds dt

=
(

1

2

)3

+
(

1

2

)3

= 1

4
.

As a result, the first moment of the area of the inscribed triangle is E[|�RST|] =
1/4. �
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The nth moment, E[Qn(r, s, t)]. To derive the nth moment of the area, we expand
Qn(r, s, t) using the binomial theorem,

Qn(r, s, t) = [rst + (1 − r)(1 − s)(1 − t)]n

=
n∑

k=0

n!

k!(n − k)!
(rst)n−k((1 − r)(1 − s)(1 − t))k

=
n∑

k=0

n!

k!(n − k)!
rn−k(1 − r)ksn−k(1 − s)ktn−k(1 − t)k.

The average value of (rst)n−k((1 − r)(1 − s)(1 − t))k is found using the Euler beta
function [11]: B(x, y) = ∫ 1

0 tx−1(1 − t)y−1dt = (x − 1)!(y − 1)!/(x + y − 1)!. By
letting x = n − k + 1, y = k + 1, we get

E[rn−k(1 − r)k] =
∫ 1

0
rn−k(1 − r)kdr = (n − k)!k!

(n + 1)!
.

Thus, μ′
n, the nth raw moment of (1), can now be expressed as

μ′
n = E[Qn(r, s, t)] =

n∑
k=0

n!

k!(n − k)!

(
(n − k)!k!

(n + 1)!

)3

= a(n)

(n + 1)(n + 1)!2
,

(2)

where

a(n) =
n∑

k=0

(n − k)!2k!2, (3)

is the Sloane integer sequence A279055 [7]. Therefore, E[|�RST|n] = μ′
n. In partic-

ular, the first few values of (2) are as shown in Table 1.

n 1 2 3 4 5 6 7

μ′
n

2

2 · 2!2

9

3 · 3!2

80

4 · 4!2

1240

5 · 5!2

30240

6 · 6!2

1071504

7 · 7!2

51996672

8 · 8!2

Table 1. The first seven raw moments of Q(r, s, t).

A Monte Carlo simulation of the probability density function
A Monte Carlo simulation [1, 5] was conducted to numerically study and validate the
theoretical findings for the distribution of the area of a randomly generated inscribed
triangle. The output of the simulation is the experimental probability density function,
with a sharp peak at 1/4, as depicted in Figure 2. We derive the elementary functions
that produce this curve (nicknamed “The Witch’s Sorting Hat,” or “The Shark Fin”) in
the next section.
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Figure 2. Experimental probability density function of Q.

Piecewise-defined probability distributions are commonly seen in geometric prob-
ability. The most notable example is in Sylvester’s Triangle Triangle Picking, whose
PDF is also split at 1/4. The significance of this particular value is explained in the
following section. A similar case of extreme slope discontinuity is also seen in Cube
Line Picking [12].

To test the simulation itself we ran an experiment for the mean area. The observed
average value of Q(r, s, t) = |�RST| is expected to approach μ′

1 = 1/4 as the sample
size is increased. A Java application was employed to study the deviation of the ex-
perimental average from its theoretical value, err = Eexp[Q(r, s, t)] − E[Q(r, s, t)].
From central limit theorem err has an approximately normal distribution with a stan-
dard deviation of σ/

√
n, where σ = (μ′

2 − μ′
1

2
)1/2 = √

3/12, and n is the sample size.
As such, Eexp[|err|], the experimental average value of |err|, is to approach

√
2/nπσ .

We ran the simulation with sample of sizes of n = 102 to 108 and averaged |err| over
50 trials. For 108 samples, we observed Eexp[|err|] ≈ 1.2 ∗ 10−5, while

√
2/nπσ ≈

1.1 ∗ 10−5.

Cumulative and probability density functions
In this section, we will derive the cumulative density function, CDF, and the probabil-
ity density function, PDF, of the area Q(r, s, t).

We have CDF(c) = Vol
{
(r, s, t) ∈ [0, 1]3 | Q(r, s, t) ≤ c

}
. The surface defined by

Q(r, s, t) = c is quadratic. To eliminate the cross terms and determine the surface
type, we rotate the axes so that one axis is along the rotation vector [1, 1, 1]. The other
two axes can be, for example, in the direction of [1, −1, 0], and [1, 1, −2]. After the
normalization of vectors the rotation formula becomes⎛

⎝r

s

t

⎞
⎠ =

⎛
⎝ 1/

√
2 1/

√
6 1/

√
3

−1/
√

2 1/
√

6 1/
√

3
0 −2/

√
6 1/

√
3

⎞
⎠
⎛
⎝r̃

s̃

t̃

⎞
⎠ ,

and the surface Q = c is now given by −r̃2/2 − s̃2/2 + (t̃ − √
3/2)2 = c − 1/4.

Hence, for c ∈ [0, 1/4) the surface is a hyperboloid of one sheet, for c = 1/4 it is

VOL. 50, NO. 5, NOVEMBER 2019 THE COLLEGE MATHEMATICS JOURNAL 367



a double cone, and for c ∈ (1/4, 1] it is a hyperboloid of two sheets. For c < 1/4,
CDF(c) is equal to the volume of a region similar to Figure 3a. For c > 1/4 it is equal
to the volume of a region similar to Figure 3b.

Figure 3. Contour plots of Q = c for c = 1/5, 1/3 respectively. The family of hyperboloids
are centered at (1/2, 1/2, 1/2), with axis of rotation t = s = r . The portion within the unit
cube [0, 1]3 is displayed.

To detail the integration steps we note that the equation for the surface Q(r, s, t) = c

can be written in three ways:

rst + (1 − r)(1 − s)(1 − t) = c (4)

(r + t − 1)(s + t − 1) = (t − 1/2)2 + c − 1/4 (5)

r = r(s, t, c) = c − st + s + t − 1

s + t − 1
. (6)

From the first equation we see that the surface is symmetric with respect to the center
of the unit cube, (1/2, 1/2, 1/2). This will be used to carry the integration over a
half region and double the result. From the second equation we see that the shape of
intersection of the surface with a plane t = t0 is a right hyperbola, on an (r, s) plane
and centered at (1 − t0, 1 − t0), which divides the plane into three regions. The sign
of the right hand side of (5), K(t0, c) = (t0 − 1/2)2 + c − 1/4, will then be used to
determine the regions that are included in the integration. If K > 0 then the solution of
Q < c corresponds to the connected region between the two branches of the hyperbola,
however, if K < 0, the solution corresponds to the complement of this region. At K =
0 the hyperbola collapses to a pair of perpendicular lines. The third equation defines r

as a function of s and t for the integration process. The Mathematica commands that
we used for graphing and integration appear in the Appendix.

Derivation of CDF(c) and PDF(c) for c ∈ (1/4, 1] In this case the region of
integration is bounded by a hyperboloid of two sheets as in Figure 3b. A slicing
plane t = t0 cuts this surface at a hyperbola, and, following the discussion under
(5), the region of integration is always between the two branches of the hyperbola
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as K(t0, c) = (t0 − 1/2)2 + (c − 1/4) > 0. The volume to calculate is that of the unit
cube with two “scoops” removed from two corners, (0, 0, 0) and (1, 1, 1). We calcu-
late the volume of the scoop near (1, 1, 1), double the result, and subtract it from the
volume of the unit cube to get the required integral.

Note that the top face of the cube, where r = 1, cuts the surface (4) at st = c and as
a result the integration limits at a fixed t will be from s = c/t to s = 1, and t will have
a range from c to 1. Therefore the volume of the region in Figure 3a can be calculated
as

CDF(c) = 1 − 2
∫ 1

c

∫ 1

c

t

(1 − r(s, t, c))dsdt, (7)

where r(s, t, c) is given by (6). We used Mathematica to perform this integration and
arrived at the following expression

CDF(c) =c − (3c − 1

2
) ln c − (4c − 1)

3
2

3
×(

tan−1

(
1√

4c − 1

)
− tan−1

(
2c − 1√
4c − 1

))
.

(8)

To simplify (8) further we employ a Machin-like identity, namely, for c > 1
4 we have

tan−1

(
1√

4c − 1

)
− tan−1

(
2c − 1√
4c − 1

)
= π − 3 tan−1

√
4c − 1.

To see this note that derivative of both sides is −(3/2)c−1(4c − 1)−1/2, and for c = 1
both sides are equal to zero. As a result, (8) simplifies to

CDF(c) = c − (3c − 1

2
) ln c + (4c − 1)

3
2

(
tan−1(

√
4c − 1) − π

3

)
.

By differentiation we can find PDF(c)

PDF(c) = d

dc
CDF(c) = 2

√
4c − 1

(
3 tan−1

√
4c − 1 − π

)
− 3 ln c.

Derivation of CDF(c) and PDF(c) for c ∈ [0, 1/4) Due to the presence of a hole
in the middle of the corresponding volume of integration calculating CDF(c) for 0 <

c < 1/4 is more involved than the previous case. This volume can be broken into five
parts according to how a plane t = t0 intersects the hyperboloid. Summarizing the
result we get

CDF(c)

2
=
∫ c

0

(
1 −

∫ 1− c
1−t

0
rds

)
dt+

∫ 1−√
1−4c
2

c

(
1 −

∫ 1− c
1−t

0
rds −

∫ 1

c
t

(1 − r)ds

)
dt+

∫ 1+√
1−4c
2

1−√
1−4c
2

(∫ 1

1− c
1−t

rds

)
dt.

(9)
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The first integral represents the case when the intersection of t = t0 with the portion
of hyperboloid in the unit cube shows only one branch of a hyperbola. In the second
integral, two branches of a hyperbola appear and we calculate the area between the
two. At the edge of the internal hole the hyperbola turns into a pair of perpendicular
lines and we begin to calculate the area of the two symmetric disjoint regions. At the
end of the hole a region similar to the second integral appears and finally the last region
is similar to the first integral.

The edge of the internal hole, at which the hyperbola turns into a pair of lines, occurs
at K(t, c) = 0. This gives t = (1 ± √

1 − 4c)/2 and r = s = (1 ∓ √
1 − 4c)/2.

Alternatively, we may delegate the segmentation of the integral (9) to Mathemat-
ica and use its Boole command. The result can be simplified using FullSimplify
and TrigToExp commands. Using (1 ± √

1 − 4c)2 = 2(1 − 2c ± √
1 − 4c), and

tanh−1(a) = 1
2 ln( 1+a

1−a
), we finally arrive at

CDF(c) = c − (3c − 1/2) ln c + (1 − 4c)3/2 tanh−1
√

1 − 4c.

Upon differentiation of CDF(c) the PDF is found to be

PDF(c) = −3 ln c − 6
√

1 − 4c tanh−1
√

1 − 4c.

To summarize the results of (7), and (9), we have

CDF(c) =⎧⎨
⎩

c − (3c − 1
2 ) ln c + (1 − 4c)3/2 tanh−1

√
1 − 4c, for 0 ≤ c ≤ 1

4
1
4 (1 + ln 4), for c = 1

4
c − (3c − 1

2 ) ln c + (4c − 1)3/2(tan−1
√

4c − 1 − π

3 ) for 1
4 ≤ c ≤ 1.

(10)

PDF(c) =⎧⎨
⎩

−3 ln c − 6
√

1 − 4c tanh−1
√

1 − 4c, for 0 ≤ c ≤ 1
4

3 ln 4, for c = 1
4−3 ln c + 2

√
4c − 1

(−π + 3 tan−1
√

4c − 1
)

for 1
4 ≤ c ≤ 1.

(11)

The graphs of these two distributions (10, 11) are displayed in Figure 4.

Figure 4. Plots of CDF(c) and PDF(c).
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Future research directions
We would like to extend the current findings in several directions. First, the case of
tetrahedron inscribed-tetrahedron picking appears as a natural extension. Next, the
number theoretic properties of the integer sequence in (3) and the corresponding cen-
tral moments will be investigated. Moreover, properties of inscribed triangles of area
1/4 appears as an interesting question. Finally, we notice that when we extend PDF(c)

from (1/4, 1), as a complex function, to (0, 1/4) then its real part is same as the PDF(c)

for (0, 1/4). An explanation of this phenomenon would be of interest.

Appendix
The Mathematica commands used to investigate the contours of Q and perform the
resulting integration are summarized in an online appendix.
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Summary. Given a triangle, we derive the probability distribution function and the moments
of the area of an inscribed triangle whose vertices are uniformly, and independently distributed
on different sides of the given triangle. The theoretical results are confirmed by a Monte Carlo
simulation and explored using a computer algebra system.
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